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1 Introduction  

ABSTRACT: High utility itemset mining (HUIM) has emerged as an important research topic in data 

mining, with applications to retail-market data analysis, stock market prediction, and recommender systems, 

etc. However there are very few empirical studies that systematically compare the performance of state-of-

the-art HUIM algorithms. In this paper, we present an experimental evaluation on major HUIM algorithms, 

using real world and synthetic datasets to evaluate their performance. Our experiments show that EFIM and 

d2HUP are generally the top two performers in running time, while EFIM also consumes the least memory in 

most cases. In order to compare these two algorithms in depth, we use another synthetic datasets with 

varying parameters so as to study the influence of the related parameters, in particular the number of 

transactions, the number of distinct items and average transaction length, on the running time and memory 

consumption of EFIM and d2HUP. In this work, we demonstrate that, d2HUP is more efficient than EFIM 

under low minimum utility values and with large sparse datasets, in terms of running time; although EFIM is 

the fastest in dense real datasets, it is among the slowest algorithms in sparse datasets. Suggest that, when a 

dataset is very sparse or the average transaction length is large, and running time is favoured over memory 

consumption, d2HUP should be chosen. Finally, compare d2HUP and EFIM with two newest algorithms, HUI -

Miner and ULB-Miner, and find these two algorithms have moderate performance. This work has reference 

value for researchers and practitioners when choosing the most appropriate HUIM algorithm for their specific 

applications. 

Mining frequent itemsets from a transaction 
database refers to the discovery of the itemsets which 
frequently appear together in the transactions. The main 
objective of Utility Mining is to identify the itemsets 
with highest utilities above a user-specified threshold, by 
considering profit, quantity, cost or other user 
preferences. If the sHUPport of an itemset exceeds a 
user-specified minimum sHUPport threshold, the itemset 
is considered as frequent. Most frequent itemset mining 
algorithms employ the downward closure property of 
itemsets. However, the unit profits and purchased 
quantities of items are not considered in the framework 
of frequent itemset mining [1][2]. The basic meaning of 
utility is the interestedness/ importance/profitability of 
items to the users. The utility of items in a transaction 
database consists of two aspects: 
(1) the importance of items of different transaction is 
called external utility, and (2) the importance of the 
items in the transaction, which is called internal utility. 

The utility of an itemset is defined as the external utility 
multiplied by the internal utility. An itemset is called a 
high utility itemset if its utility is greater than a user 
specified threshold; otherwise, the itemset is called a 
low utility itemset. Mining high utility itemsets from 
databases refers to finding the itemsets with high profits 
and it is not an easy task since downward closure 
property.In other words, pruning search space for high 
utility itemset mining is hard because a sHUPerset of a 
low utility itemset may be a high utility itemset. A 
simple method to address this problem is to enumerate 
all itemsets from databases by the principle of 
exhaustion. Obviously, this method couldn’t tolerate the 
problems of a search space, especially when databases 
contain lots of long transactions or a low minimum 
utility threshold is set. Recently proposed compact tree 
structure, viz., HUP-Tree, maintains the information of 
transactions and itemsets, facilitate the mining 
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performance and avoid scanning original database 
repeatedly. 
II RELATED WORK 

A number of traditional ARM algorithms and 
optimizations have been proposed. One of the well-
known algorithms is HUIM algorithm, which is the 
pioneer for efficiently mining association rules from 
large databases. It’s widely recognized that FP-Growth 
achieves a better performance than HUIM Algorithm 
since it finds frequent itemsets without generating any 
candidate itemset and it scans database just twice. There 
are also many studies that have developed different 
weighting functions for weighted pattern mining. 
Mengchi Liu 
proposed an algorithm,[3][5] called HUI-Miner (High 
Utility Itemset Miner), for high utility itemset 
mining.HUI-Miner uses a structure, called utility-list, to 
store the utility information of an itemset and the 
heuristic information for pruning the search space of 
HUI-Miner. By avoiding the costly generation and 
utility computation of numerous candidate itemsets, 
HUI-Miner can efficiently mine high utility itemsets 
from the utility lists constructed from a mined database. 
Although two-phase algorithm reduces search space by 
using TWDC property, it still generates too many 
candidates to obtain HTWUIs and requires multiple 
database scans. To overcome this problem, Li et al. 
proposed an isolated items discarding strategy (IIDS) to 
reduce the number of candidates. By pruning isolated 
items during levelwise search, the number of candidate 
itemsets for HTWUIs in phase I can be reduced. 
However, this algorithm still scans database for several 
times and uses a candidate generation-and-test scheme 
to find high utility itemsets. To efficiently generate 
HTWUIs in phase I and avoid scanning database too 
many times, Ahmed et al.proposed a tree - based 
algorithm, named IHUP. A tree based structure called 
IHUP-Tree is used to maintain the information about 
itemsets and their utilities. Each node of an IHUP-Tree 
consists of an item name, a TWU value and a sHUPport 
count. [4][5]. IHUP algorithm has three steps: 1) 
construction of IHUP-Tree, 2) generation of HTWUIs, 
and 3) identification of high utility itemsets. In step 1, 
items in transactions are rearranged in a fixed order such 
as lexicographic order, sHUPport descending order or 
TWU descending order. Then the rearranged 
transactions are inserted into an IHUP-Tree. In step 2, 
HTWUIs are generated from the IHUP-Tree by applying 
FP-Growth. Thus, HTWUIs in phase I can be found 
without generating any candidate for HTWUIs. In step 
3, high utility itemsets and their utilities are ident field 
from the set of HTWUIs by scanning the original 
database once. Although IHUP achieves a better 
performance than IIDS and Two-Phase, it still produces 
too many HTWUIs in phase I. Note that IHUP and Two-
Phase produce the same number of HTWUIs in phase I 
since they both use TWU framework to overestimate 

itemsets utilities. However, this framework may produce 
too many HTWUIs in phase I since the overestimated 
utility calculated by TWU is too large. Moreover, the 
number of HTWUIs in phase I also affects the 
performance of phase II since the more HTWUIs the 
algorithm generates in phase I, the more execution time 
for identifying high utility itemsets it requires in phase 
II. 
III PROBLEM STATEMENT 
 

In the literature we have studied the different 
methods proposed for high utility itemset mining from 
large datasets. But all this methods frequently generate a 
huge set of PHUIs and their mining performance is 
degraded consequently.[2] Further in case of long 
transactions in dataset or low thresholds are set, then this 
condition may become worst. The huge number of 
PHUIs forms a challenging problem to the mining 
performance since the more PHUIs the algorithm 
generates, the higher processing time it consumes. Thus 
to overcome this challenges the efficient algorithms 
presented recently in. These methods in outperform the 
state-of-the-art algorithms almost in all cases on both 
real and synthetic data set.[4] However this approach in 
is still needs to be improved in case of less memory 
based systems. 
IV EXISTING SYSTEM 

The framework of the existing methods consists 
of three steps: 1) Scan the database twice to construct a 
global HUP Tree with the first two strategies 2) 
recursively generate PHUIs from global HUP -Tree and 
local HUP-Trees by HUP-Growth with the third and 
fourth strategies or by HUP-Growth+ with the last two 
strategies and 3) identify actual high utility item sets 
from the set of PHUIs. To distinguish the patterns found 
by our methods from HTWUIs since our methods are 
not based on traditional TWU model. By our effective 
strategies, the set of PHUIs will become much smaller 
than the set of HTWUIs [6]. After constructing a global 
HUP-Tree, a basic method for generating PHUIs is to 
mine HUP-Tree by FP-Growth. Thus, we propose an 
algorithm HUP-Growth by pushing two more strategies 
into the framework of FP-Growth. By the strategies, 
overestimated utilities of item sets can be decreased and 
thus the number of PHUIs can be further reduced. HUP-
Growth achieves better performance than FP-Growth by 
using DLU and DLN to decrease overestimated utilities 
of item sets.  
V PROPOSED SYSTEM 

The goal of utility mining is to generate all the 
high utility itemsets whose utility values are beyond a 
user specified threshold in a transaction. 
A.HUIM Growth 

The HUIM-Growth is one of the efficient 
algorithms to generate high utility itemsets depending on 
construction of a global HUIM-Tree. In phase I, the 
framework of HUIM-Tree follows three steps: (i). 
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Construction of HUIM-Tree. (ii). Generate PHUIs from 
HUIM-Tree. (iii). Identify high utility itemsets using 
PHUI. The construction of global HUIM-Tree is 
follows, (i). Discarding global unpromising items (i.e., 
DGU strategy) is to eliminate the low utility items and 
their utilities from the transaction utilities. (ii). 
Discarding global node utilities (i.e., DGN strategy) 
during global HUP-Tree construction. By DGN strategy, 
node utilities which are nearer to HUP-Tree root node 
are effectively reduced. The PHUI is similar to TWU, 
which compute all itemsets utility with the help of 
estimated utility. Finally, identify high utility itemsets 
(not less than min_sHUP) from PHUIs values. The 
global HUP-Tree contains many sub paths. Each path is 
considered from bottom node of header table. This path 
is named as conditional pattern base (CPB). 
Disadvantages 

It requires multiple database scans.It Generate 
multiple candidate Itemset.Other Algorithm like 
HUIM treats all item with same importance or 
profit. It consumes more memory space and 
performs badly with long pattern dataset. These 
methods are further needs to be improved over their 
limitations presented below: 

(1) Performance of this methods needs to be 
investigated in low memory based systems for mining 
high utility itemsets from large transactional datasets 
and hence needs to address further as well. (2)These 
proposed methods cannot overcome the screenings as 
well as overhead of null transactions; hence, 
performance degrades drastically. 
 
B. HUP Growth+ 
 

Although DGU and DGN strategies are 
efficiently reduce the number of candidates in Phase 
1(i.e., global HUP-Tree). But they cannot be applied 
during the construction of the local HUP -Tree (Phase-
2). Instead use, DLU strategy (Discarding local 
unpromising items) to discarding utilities of low utility 
items from path utilities of the paths and DLN strategy 
(Discarding local node utilities) to discarding item 
utilities of descendant nodes during the local HUP-Tree 
construction. Even though, still the algorithm facing 
some performance issues in phase-2. To overcome this, 
maximum transaction weight utilizations (MTWU) are 
computed from all the items and considering multiple of 
min_sHUP as a user specified threshold value as shown 
in algorithm. By this modification, performance will 
increase compare with existing HUP-Tree construction 
also improves the performance of HUP-growth 
algorithm. An improved utility pattern growth is 
abbreviated as IHUPG. 
Advantages 

It scan the database just twice. It is easy to 
implement.It  reduces  unnecessary  calculation 
when  database  is  HUPdated,  and when   user   

specified   minimum threshold is changed. It 
requires less memory space and less execution 
time. 
C. HUP + Algorithm 
 
Input: Transaction database D, user specified threshold. 
 
Output: high utility itemsets. 
 
Begin 
 
1. Load dataset contains number transactions Td ∈  D 
 
2. Determine transaction utility of Td in D and TWU of 
itemset (X) 
 
3. Compute min_sHUP (MTWU * user specified 
threshold) 
 
4. If (TWU(X) ≤ min_sHUP) then Remove Items from 
transaction database 
 
5. Else insert into header table H and to keep the items 
in the descending order. 
 
6. Repeat step 4 & 5 until end of the D. 
 
7. Insert Td into global HUP-Tree. 
 
8. Apply DGU and DGN strategies on global HUP- tree. 
 
9. Re-construct the HUP-Tree 
 
10. For each item ai in H do 
 
11. Generate a PHUI Y= X U ai 
 
12. Estimate utility of Y is set as ai’s utility value in H 
 
13. Put local promising items in Y-CPB into 
 
H 
 
14. Apply strategy DLU to reduce path utilities of the 
paths 
 
15. Apply strategy DLN and insert paths into 
 
Td 
16. If Td ≠ null then call for loop 
 
End for End 
D. Application 
 

Rare itemsets provide useful information in 
different decision-making domains such as business 
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transactions, medical, security, fraudulent transactions 
and retail communities. For example, in a 
 

sHUPermarket, customers purchase microwave 
ovens or frying pans rarely as compared to bread, 
washing powder, soap. But the former transactions yield 
more profit for the sHUPermarket. Similarly, the high-
profit rare itemsets are found to be very useful in many 
application areas. For example, in medical application, 
the rare combination of symptoms can provide useful 
insights for doctors. A retail business may be interested 
in identifying its most valuable customers i.e. who 
contribute a major fraction of overall company 
profit.Even though, still the algorithm facing some 
performance issues in phase-2. To overcome this, 
maximum transaction weight utilizations Performance of 
this methods needs to be investigated in low memory. 
 
VI IMPLEMENTATION 
 

A. System Architecture and Design 
 
This is basic system architecture to represent the 

basic functionality of the system. To construct the HUP-
Tree to apply the two algorithms HUP-Growth and 
HUP-Growth+ to find the potential high utility item sets. 
Main intension of this system is reducing item sets over 
calculated utilities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 contains the following blocks: 
 

Transaction DB and Profit table are 
input  to  the  system  to  discover potential 
highly utilized Item sets. Create HUP-tree: 
HUP-tree is created using discarding 
unfavourable global items  and  reducing  global  
node utility.   HUP-tree   has   fields   as 
Node.name  which  contain  name  of the  item,  

Node.  Count,  Node.nu, Node. parent, Node. 
hlink. 
 

Discarding global unpromising items: 
After  calculating  transaction  utility and 
transaction weighted utility, the item  sets  
having  less  utility  than predefined minimum 
threshold utility are disposed. Discarding global 
node utility: After disposing the unfavourable 
items the global node utilities are reduced. And 
nodes  are  inserted  into  HUP  treeusing create 
HUP-tree algorithm. Mining HUP-tree: In which 
local unpromising Item and node utility. 
Discarding local unpromising items: Construct 
conditional pattern base of bottom  item  entry  
in  header  table Retrieve the entire path related 
to that item  CPB.  Conditional  HUP  tree 
created by two scans over CPB. Local 
unfavourable  items  removed  using path utility 
of each item in CPB paths are organized in 
descending order. Discarding    local    node    
utility: Reorganized  path  is  inserted  into 
conditional utility pattern tree using reduce local 
node utility strategy. Potential High Utility Item 
sets: Identify potential high utility item sets and 
their utilities form HUP tree mining using 
Dispose of local unfavourable items and Reduce 
local node utility. 
VII CONCLUSION AND FUTURE 
SCOPE 

Proposed system HUP-Growth and HUP-
Growth+ Mining for discovering High utility item 
sets from databases. Data Structure HUP-Tree for 
recording the information of highly utilized item sets 
and four effective strategies, DGU, DGN, DLU and 
DLN, to minimize search space and the number of 
candidates for utility mining. Potential high utility 
item sets can be generated from Utility Pattern Tree 
with only two scans of the database. HUP-Growth 
especially HUP-Growth+ Algorithm is faster than 
previous algorithms when database have lots of long 
transactions. 
 

The current study proposed two definitions to 
capture the effects of the noise in the data. This 
pointed out possible scenarios where the mining of 
these patterns is central as well as the challenges in 
developing efficient mining algorithms. Future 
works include the extension of the temporal utility 
pattern tree to mine noisy patterns, and developing 
more efficient techniques to handle genomic data. 
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