

 South Asian J. Eng. Technol , 198-202| 198

Full Length Article

CONFABULATION BASE INFREQUENT WEIGHTED ITEMSET MINING USING
FREQUENT PATTERN GROWTH

a Dr. E. Baby Anitha , a N. S. Nithiya, b M. Udhayapriya , b R. Vigneshwaran , b V. RA. Vimal , b P.
Naveen kumar

aAssociate Professor, Department of Computer Science and Engineering, K.S.R. College of Engineering, Tiruchengode.
aAssociate Professor, Department of Computer Science and Engineering, K.S.R. College of Engineering, Tiruchengode.
bFinal Year Student, Department of Computer Science and Engineering, K.S.R. College of Engineering, Tiruchengode.
bFinal Year Student, Department of Computer Science and Engineering, K.S.R. College of Engineering, Tiruchengode.
bFinal Year Student, Department of Computer Science and Engineering, K.S.R. College of Engineering, Tiruchengode.
bFinal Year Student, Department of Computer Science and Engineering, K.S.R. College of Engineering, Tiruchengode.

*Corresponding Author

Dr. E. Baby Anitha

1 Introduction

ABSTRACT: High utility itemset mining (HUIM) has emerged as an important research topic in data

mining, with applications to retail-market data analysis, stock market prediction, and recommender systems,

etc. However there are very few empirical studies that systematically compare the performance of state-of-

the-art HUIM algorithms. In this paper, we present an experimental evaluation on major HUIM algorithms,

using real world and synthetic datasets to evaluate their performance. Our experiments show that EFIM and

d2HUP are generally the top two performers in running time, while EFIM also consumes the least memory in

most cases. In order to compare these two algorithms in depth, we use another synthetic datasets with

varying parameters so as to study the influence of the related parameters, in particular the number of

transactions, the number of distinct items and average transaction length, on the running time and memory

consumption of EFIM and d2HUP. In this work, we demonstrate that, d2HUP is more efficient than EFIM

under low minimum utility values and with large sparse datasets, in terms of running time; although EFIM is

the fastest in dense real datasets, it is among the slowest algorithms in sparse datasets. Suggest that, when a

dataset is very sparse or the average transaction length is large, and running time is favoured over memory

consumption, d2HUP should be chosen. Finally, compare d2HUP and EFIM with two newest algorithms, HUI -

Miner and ULB-Miner, and find these two algorithms have moderate performance. This work has reference

value for researchers and practitioners when choosing the most appropriate HUIM algorithm for their specific

applications.

Mining frequent itemsets from a transaction
database refers to the discovery of the itemsets which
frequently appear together in the transactions. The main
objective of Utility Mining is to identify the itemsets
with highest utilities above a user-specified threshold, by
considering profit, quantity, cost or other user
preferences. If the sHUPport of an itemset exceeds a
user-specified minimum sHUPport threshold, the itemset
is considered as frequent. Most frequent itemset mining
algorithms employ the downward closure property of
itemsets. However, the unit profits and purchased
quantities of items are not considered in the framework
of frequent itemset mining [1][2]. The basic meaning of
utility is the interestedness/ importance/profitability of
items to the users. The utility of items in a transaction
database consists of two aspects:
(1) the importance of items of different transaction is
called external utility, and (2) the importance of the
items in the transaction, which is called internal utility.

The utility of an itemset is defined as the external utility
multiplied by the internal utility. An itemset is called a
high utility itemset if its utility is greater than a user
specified threshold; otherwise, the itemset is called a
low utility itemset. Mining high utility itemsets from
databases refers to finding the itemsets with high profits
and it is not an easy task since downward closure
property.In other words, pruning search space for high
utility itemset mining is hard because a sHUPerset of a
low utility itemset may be a high utility itemset. A
simple method to address this problem is to enumerate
all itemsets from databases by the principle of
exhaustion. Obviously, this method couldn’t tolerate the
problems of a search space, especially when databases
contain lots of long transactions or a low minimum
utility threshold is set. Recently proposed compact tree
structure, viz., HUP-Tree, maintains the information of
transactions and itemsets, facilitate the mining

 South Asian J. Eng. Technol, 2017, 198-202| 199

performance and avoid scanning original database
repeatedly.
II RELATED WORK

A number of traditional ARM algorithms and
optimizations have been proposed. One of the well-
known algorithms is HUIM algorithm, which is the
pioneer for efficiently mining association rules from
large databases. It’s widely recognized that FP-Growth
achieves a better performance than HUIM Algorithm
since it finds frequent itemsets without generating any
candidate itemset and it scans database just twice. There
are also many studies that have developed different
weighting functions for weighted pattern mining.
Mengchi Liu
proposed an algorithm,[3][5] called HUI-Miner (High
Utility Itemset Miner), for high utility itemset
mining.HUI-Miner uses a structure, called utility-list, to
store the utility information of an itemset and the
heuristic information for pruning the search space of
HUI-Miner. By avoiding the costly generation and
utility computation of numerous candidate itemsets,
HUI-Miner can efficiently mine high utility itemsets
from the utility lists constructed from a mined database.
Although two-phase algorithm reduces search space by
using TWDC property, it still generates too many
candidates to obtain HTWUIs and requires multiple
database scans. To overcome this problem, Li et al.
proposed an isolated items discarding strategy (IIDS) to
reduce the number of candidates. By pruning isolated
items during levelwise search, the number of candidate
itemsets for HTWUIs in phase I can be reduced.
However, this algorithm still scans database for several
times and uses a candidate generation-and-test scheme
to find high utility itemsets. To efficiently generate
HTWUIs in phase I and avoid scanning database too
many times, Ahmed et al.proposed a tree - based
algorithm, named IHUP. A tree based structure called
IHUP-Tree is used to maintain the information about
itemsets and their utilities. Each node of an IHUP-Tree
consists of an item name, a TWU value and a sHUPport
count. [4][5]. IHUP algorithm has three steps: 1)
construction of IHUP-Tree, 2) generation of HTWUIs,
and 3) identification of high utility itemsets. In step 1,
items in transactions are rearranged in a fixed order such
as lexicographic order, sHUPport descending order or
TWU descending order. Then the rearranged
transactions are inserted into an IHUP-Tree. In step 2,
HTWUIs are generated from the IHUP-Tree by applying
FP-Growth. Thus, HTWUIs in phase I can be found
without generating any candidate for HTWUIs. In step
3, high utility itemsets and their utilities are ident field
from the set of HTWUIs by scanning the original
database once. Although IHUP achieves a better
performance than IIDS and Two-Phase, it still produces
too many HTWUIs in phase I. Note that IHUP and Two-
Phase produce the same number of HTWUIs in phase I
since they both use TWU framework to overestimate

itemsets utilities. However, this framework may produce
too many HTWUIs in phase I since the overestimated
utility calculated by TWU is too large. Moreover, the
number of HTWUIs in phase I also affects the
performance of phase II since the more HTWUIs the
algorithm generates in phase I, the more execution time
for identifying high utility itemsets it requires in phase
II.
III PROBLEM STATEMENT

In the literature we have studied the different
methods proposed for high utility itemset mining from
large datasets. But all this methods frequently generate a
huge set of PHUIs and their mining performance is
degraded consequently.[2] Further in case of long
transactions in dataset or low thresholds are set, then this
condition may become worst. The huge number of
PHUIs forms a challenging problem to the mining
performance since the more PHUIs the algorithm
generates, the higher processing time it consumes. Thus
to overcome this challenges the efficient algorithms
presented recently in. These methods in outperform the
state-of-the-art algorithms almost in all cases on both
real and synthetic data set.[4] However this approach in
is still needs to be improved in case of less memory
based systems.
IV EXISTING SYSTEM

The framework of the existing methods consists
of three steps: 1) Scan the database twice to construct a
global HUP Tree with the first two strategies 2)
recursively generate PHUIs from global HUP -Tree and
local HUP-Trees by HUP-Growth with the third and
fourth strategies or by HUP-Growth+ with the last two
strategies and 3) identify actual high utility item sets
from the set of PHUIs. To distinguish the patterns found
by our methods from HTWUIs since our methods are
not based on traditional TWU model. By our effective
strategies, the set of PHUIs will become much smaller
than the set of HTWUIs [6]. After constructing a global
HUP-Tree, a basic method for generating PHUIs is to
mine HUP-Tree by FP-Growth. Thus, we propose an
algorithm HUP-Growth by pushing two more strategies
into the framework of FP-Growth. By the strategies,
overestimated utilities of item sets can be decreased and
thus the number of PHUIs can be further reduced. HUP-
Growth achieves better performance than FP-Growth by
using DLU and DLN to decrease overestimated utilities
of item sets.
V PROPOSED SYSTEM

The goal of utility mining is to generate all the
high utility itemsets whose utility values are beyond a
user specified threshold in a transaction.
A.HUIM Growth

The HUIM-Growth is one of the efficient
algorithms to generate high utility itemsets depending on
construction of a global HUIM-Tree. In phase I, the
framework of HUIM-Tree follows three steps: (i).

 South Asian J. Eng. Technol, 2017, 198-202| 200

Construction of HUIM-Tree. (ii). Generate PHUIs from
HUIM-Tree. (iii). Identify high utility itemsets using
PHUI. The construction of global HUIM-Tree is
follows, (i). Discarding global unpromising items (i.e.,
DGU strategy) is to eliminate the low utility items and
their utilities from the transaction utilities. (ii).
Discarding global node utilities (i.e., DGN strategy)
during global HUP-Tree construction. By DGN strategy,
node utilities which are nearer to HUP-Tree root node
are effectively reduced. The PHUI is similar to TWU,
which compute all itemsets utility with the help of
estimated utility. Finally, identify high utility itemsets
(not less than min_sHUP) from PHUIs values. The
global HUP-Tree contains many sub paths. Each path is
considered from bottom node of header table. This path
is named as conditional pattern base (CPB).
Disadvantages

It requires multiple database scans.It Generate
multiple candidate Itemset.Other Algorithm like
HUIM treats all item with same importance or
profit. It consumes more memory space and
performs badly with long pattern dataset. These
methods are further needs to be improved over their
limitations presented below:

(1) Performance of this methods needs to be
investigated in low memory based systems for mining
high utility itemsets from large transactional datasets
and hence needs to address further as well. (2)These
proposed methods cannot overcome the screenings as
well as overhead of null transactions; hence,
performance degrades drastically.

B. HUP Growth+

Although DGU and DGN strategies are
efficiently reduce the number of candidates in Phase
1(i.e., global HUP-Tree). But they cannot be applied
during the construction of the local HUP -Tree (Phase-
2). Instead use, DLU strategy (Discarding local
unpromising items) to discarding utilities of low utility
items from path utilities of the paths and DLN strategy
(Discarding local node utilities) to discarding item
utilities of descendant nodes during the local HUP-Tree
construction. Even though, still the algorithm facing
some performance issues in phase-2. To overcome this,
maximum transaction weight utilizations (MTWU) are
computed from all the items and considering multiple of
min_sHUP as a user specified threshold value as shown
in algorithm. By this modification, performance will
increase compare with existing HUP-Tree construction
also improves the performance of HUP-growth
algorithm. An improved utility pattern growth is
abbreviated as IHUPG.
Advantages

It scan the database just twice. It is easy to
implement.It reduces unnecessary calculation
when database is HUPdated, and when user

specified minimum threshold is changed. It
requires less memory space and less execution
time.
C. HUP + Algorithm

Input: Transaction database D, user specified threshold.

Output: high utility itemsets.

Begin

1. Load dataset contains number transactions Td ∈ D

2. Determine transaction utility of Td in D and TWU of
itemset (X)

3. Compute min_sHUP (MTWU * user specified
threshold)

4. If (TWU(X) ≤ min_sHUP) then Remove Items from
transaction database

5. Else insert into header table H and to keep the items
in the descending order.

6. Repeat step 4 & 5 until end of the D.

7. Insert Td into global HUP-Tree.

8. Apply DGU and DGN strategies on global HUP- tree.

9. Re-construct the HUP-Tree

10. For each item ai in H do

11. Generate a PHUI Y= X U ai

12. Estimate utility of Y is set as ai’s utility value in H

13. Put local promising items in Y-CPB into

H

14. Apply strategy DLU to reduce path utilities of the
paths

15. Apply strategy DLN and insert paths into

Td
16. If Td ≠ null then call for loop

End for End
D. Application

Rare itemsets provide useful information in
different decision-making domains such as business

 South Asian J. Eng. Technol, 2017, 198-202| 201

transactions, medical, security, fraudulent transactions
and retail communities. For example, in a

sHUPermarket, customers purchase microwave
ovens or frying pans rarely as compared to bread,
washing powder, soap. But the former transactions yield
more profit for the sHUPermarket. Similarly, the high-
profit rare itemsets are found to be very useful in many
application areas. For example, in medical application,
the rare combination of symptoms can provide useful
insights for doctors. A retail business may be interested
in identifying its most valuable customers i.e. who
contribute a major fraction of overall company
profit.Even though, still the algorithm facing some
performance issues in phase-2. To overcome this,
maximum transaction weight utilizations Performance of
this methods needs to be investigated in low memory.

VI IMPLEMENTATION

A. System Architecture and Design

This is basic system architecture to represent the

basic functionality of the system. To construct the HUP-
Tree to apply the two algorithms HUP-Growth and
HUP-Growth+ to find the potential high utility item sets.
Main intension of this system is reducing item sets over
calculated utilities.

Fig. 1 contains the following blocks:

Transaction DB and Profit table are
input to the system to discover potential
highly utilized Item sets. Create HUP-tree:
HUP-tree is created using discarding
unfavourable global items and reducing global
node utility. HUP-tree has fields as
Node.name which contain name of the item,

Node. Count, Node.nu, Node. parent, Node.
hlink.

Discarding global unpromising items:
After calculating transaction utility and
transaction weighted utility, the item sets
having less utility than predefined minimum
threshold utility are disposed. Discarding global
node utility: After disposing the unfavourable
items the global node utilities are reduced. And
nodes are inserted into HUP treeusing create
HUP-tree algorithm. Mining HUP-tree: In which
local unpromising Item and node utility.
Discarding local unpromising items: Construct
conditional pattern base of bottom item entry
in header table Retrieve the entire path related
to that item CPB. Conditional HUP tree
created by two scans over CPB. Local
unfavourable items removed using path utility
of each item in CPB paths are organized in
descending order. Discarding local node
utility: Reorganized path is inserted into
conditional utility pattern tree using reduce local
node utility strategy. Potential High Utility Item
sets: Identify potential high utility item sets and
their utilities form HUP tree mining using
Dispose of local unfavourable items and Reduce
local node utility.
VII CONCLUSION AND FUTURE
SCOPE

Proposed system HUP-Growth and HUP-
Growth+ Mining for discovering High utility item
sets from databases. Data Structure HUP-Tree for
recording the information of highly utilized item sets
and four effective strategies, DGU, DGN, DLU and
DLN, to minimize search space and the number of
candidates for utility mining. Potential high utility
item sets can be generated from Utility Pattern Tree
with only two scans of the database. HUP-Growth
especially HUP-Growth+ Algorithm is faster than
previous algorithms when database have lots of long
transactions.

The current study proposed two definitions to
capture the effects of the noise in the data. This
pointed out possible scenarios where the mining of
these patterns is central as well as the challenges in
developing efficient mining algorithms. Future
works include the extension of the temporal utility
pattern tree to mine noisy patterns, and developing
more efficient techniques to handle genomic data.

 South Asian J. Eng. Technol, 2017, 198-202| 202

References

1. Fournier-Viger, P., 2018. FHN: efficient

mining of high-utility itemsets with

negative unit profits. Adv. Data Min.

Appl., 16—29.

2. Fournier-Viger, P., Wu, C.W., Zida, S.,

Tseng, V.S., 2014. FHM: faster high-

utility itemset mining using estimated

utility co-occurrence pruning. Found.

Intell. Syst. 8502, 83—92.

3. Agrawal, R., Srikant, R.: Fast algorithms

for mining association rules in large

databases. In: Proc. Int. Conf. Very

Large Databases, pp. 487–499, (1994)

4. Fournier-Viger, P., Wu, C.-W., Zida, S.,

Tseng, V. S.: FHM: Faster high-utility

itemset mining using estimated utilityco-

occurrence pruning. In: Proc. 21st

Intern. Symp. on Methodologies for

Intell. Syst., pp. 83–92 (2014)

5. Vincent S Tseng, Bai-En Shie, Cheng-

Wei Wu, and Philip S. Yu, Fellow,

―Efficient Algorithms for Mining High

Utility Itemsets from Transactional

Databases‖, IEEE Transactions On

Knowledge And Data Engineering,

volume 25, Issue No. 8, pp 1772-1786,

AUGUST 2013

