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ABSTRACT: In this paper we introduce an approach to increase integration rate of 
elements of an four-cascade amplifier circuit. Framework the approach we consider a 
heterostructure with special configuration. Several specific areas of the heterostructure 
should be doped by diffusion or ion implantation. Annealing of dopant and/or radiation 
defects should be optimized. Keywords:  
    
Keywords: four-cascade amplifier circuit; increasing integration rate of elements; 
optimization of manufacturing. 

1. Introduction 

An actual and intensively solving problems of 

solid state electronics is increasing of integration rate of 

elements of integrated circuits (p-n-junctions, their 

systems et al) [1-8]. Increasing of the integration rate 

leads to necessity to decrease their dimensions. To 

decrease the dimensions are using several approaches. 

They are widely using laser and microwave types of 

annealing of infused dopants. These types of annealing are 

also widely using for annealing of radiation defects, 

generated during ion implantation [9-17]. Using the 

approaches gives a possibility to increase integration rate 

of elements of integrated circuits through inhomogeneity 

of technological parameters due to generating 

inhomogenous distribution of temperature. In this 

situation one can obtain decreasing dimensions of 

elements of integrated circuits [18] with account 

Arrhenius law [1,3]. Another approach to manufacture 

elements of integrated circuits with smaller dimensions is 

doping of heterostructure by diffusion or ion implantation 

[1-3]. However in this case optimization of dopant and/or 

radiation defects is required [18]. 

In this paper we consider a heterostructure. The 

heterostructure consist of a substrate and several epitaxial 

layers. Some sections have been manufactured in the 

epitaxial layers. Further we consider doping of these 

sections by diffusion or ion implantation. The doping gives 

a possibility to manufacture field-effect transistors 

framework an four-cascade amplifier circuit so as it is 

shown on Figs. 1. The manufacturing gives a possibility to 

increase density of elements of the integrator circuit [4]. 

After the considered doping dopant and/or radiation 

defects should be annealed. Framework the paper we 

analyzed dynamics of redistribution of dopant and/or 

radiation defects during their annealing. We introduce an 

approach to decrease dimensions of the element. However 

it is necessary to complicate technological process. 

 

2. Methods 
 In this section we determine spatio-temporal 

distributions of concentrations of infused and implanted 

dopants. To determine these distributions we calculate 

appropriate solutions of the second Fick's law [1,3,18] 
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Boundary and initial conditions for the equations are 
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Figure 1. The considered amplifier circuit [4]. 

 

 The function C(x,y,z,t) describes the spatio-

temporal distribution of concentration of dopant; T is the 

temperature of annealing; DС is the dopant diffusion 

coefficient. Value of dopant diffusion coefficient could be 

changed with changing materials of heterostructure, with 

changing temperature of materials (including annealing), 

with changing concentrations of dopant and radiation 

defects. We approximate dependences of dopant diffusion 

coefficient on parameters by the following relation with 

account results in Refs. [20-22] 
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Here the function DL (x,y,z,T) describes the spatial (in 

heterostructure) and temperature (due to Arrhenius law) 

dependences of diffusion coefficient of dopant. The 

function P (x,y,z,T) describes the limit of solubility of 

dopant. Parameter  [1,3] describes average quantity of 

charged defects interacted with atom of dopant [20]. The 

function V (x,y,z,t) describes the spatio-temporal 

distribution of concentration of radiation vacancies. 

Parameter V* describes the equilibrium distribution of 

concentration of vacancies. The considered 

concentrational dependence of dopant diffusion coefficient 

has been described in details in [20]. It should be noted, 

that using diffusion type of doping did not generation 

radiation defects. In this situation 1= 2= 0. We determine 

spatio-temporal distributions of concentrations of 

radiation defects by solving the following system of 

equations [21,22] 
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Boundary and initial conditions for these equations are 
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 Here  =I,V. The function I (x,y,z,t) describes the 

spatio-temporal distribution of concentration of radiation 

interstitials; D(x,y,z,T) are the diffusion coefficients of 

point radiation defects; terms V2(x,y,z,t) and I2(x,y,z,t) 

correspond to generation divacancies and diinterstitials; 

kI,V(x,y,z,T) is the parameter of recombination of point 

radiation defects; kI,I(x,y,z,T) and kV,V(x,y,z,T) are the 

parameters of generation of simplest complexes of point 

radiation defects. 

 Further we determine distributions in space and 

time of concentrations of divacancies V(x,y,z,t) and 

diinterstitials I(x,y,z,t) by solving the following system of 

equations [21,22] 
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. 

Boundary and initial conditions for these equations are 
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 Here D(x,y,z,T) are the diffusion coefficients of 

the above complexes of radiation defects; kI(x,y,z,T) and kV 

(x,y,z,T) are the parameters of decay of these complexes. 

 We calculate distributions of concentrations of 
point radiation defects in space and time by recently 
elaborated approach [18]. The approach based on 
transformation of approximations of diffusion coefficients 
in the following form: D(x,y,z,T)=D0[1+ g(x,y,z,T)], 
where D0 are the average values of diffusion coefficients, 
0<1, |g(x, y,z,T)|1,  =I,V. We also used analogous 
transformation of approximations of parameters of 
recombination of point defects and parameters of 
generation of their complexes: kI,V(x,y,z,T)=k0I,V[1+I,V 
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 We determine solutions of Eqs.(8) with conditions 
(9) framework recently introduced approach [18], i.e. as 
the power series 
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(9) gives us possibility to obtain equations for initial-order 
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Solutions of the equations could be obtained by standard 
Fourier approach [24,25]. The solutions are presented in 
the Appendix. 

 Now we calculate distributions of concentrations 
of simplest complexes of point radiation defects in space 
and time. To determine the distributions we transform 
approximations of diffusion coefficients in the following 
form: D(x,y,z,T)=D0[1+ g(x,y,z,T)], where D0 are 
the average values of diffusion coefficients. In this 
situation the Eqs.(6) could be written as 

 
  

 
   







 





t,z,y,xIT,z,y,xk

x

t,z,y,x
T,z,y,xg

x
D

t

t,z,y,x
I,I

I

III

I 2

0
1














 

  
 

  
 








 








 




z

t,z,y,x
T,z,y,xg

z
D

y

t,z,y,x
T,z,y,xg

y
D I

III

I

III

















11

00

 

   t,z,y,xIT,z,y,xk
I

  

 
  

 
   







 





t,z,y,xIT,z,y,xk

x

t,z,y,x
T,z,y,xg

x
D

t

t,z,y,x
I,I

V

VVV

V 2

0
1













 

  
 

  
 








 








 




z

t,z,y,x
T,z,y,xg

z
D

y

t,z,y,x
T,z,y,xg

y
D V

VVV

V

VVV

















11

00

 

   t,z,y,xIT,z,y,xk
I

 . 

 Further we determine solutions of above 
equations as the following power series 

    





0i
i

i t,z,y,xt,z,y,x


 .        (11) 

 Now we used the series (11) into Eqs.(6) and 

appropriate boundary and initial conditions. The using 

gives the possibility to obtain equations for initial-order 

approximations of concentrations of complexes of defects 

0(x,y,z,t), corrections for them i(x,y,z,t) (for them i 1) 

and boundary and initial conditions for them. We remove 
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equations and conditions to the Appendix. Solutions of the 

equations have been calculated by standard approaches 

[24,25] and presented in the Appendix. 

 Now we calculate distribution of concentration of 

dopant in space and time by using the approach, which 

was used for analysis of radiation defects. To use the 

approach we consider following transformation of 

approximation of dopant diffusion coefficient: 

DL(x,y,z,T)=D0L[1+ LgL(x,y,z,T)], where D0L is the average 

value of dopant diffusion coefficient, 0L< 1, 

|gL(x,y,z,T)|1. Farther we consider solution of Eq.(1) as 

the following series: 

    






0 1i j
ij

ji

L
t,z,y,xCt,z,y,xC  . 

 Using the relation into Eq.(1) and conditions (2) 

leads to obtaining equations for the functions Cij(x,y,z,t) (i 

1, j 1), boundary and initial conditions for them. The 

equations are presented in the Appendix. Solutions of the 

equations have been calculated by standard approaches 

(see, for example, [24,25]). The solutions are presented in 

the Appendix. 

 We analyzed distributions of concentrations of 

dopant and radiation defects in space and time analytically 

by using the second-order approximations on all 

parameters, which have been used in appropriate series. 

Usually the second-order approximations are enough good 

approximations to make qualitative analysis and to obtain 

quantitative results. All analytical results have been 

checked by numerical simulation. 

 

2. Discussion 

 In this section we analyzed spatio-temporal 

distributions of concentrations of dopants. Figs. 2 shows 

typical spatial distributions of concentrations of dopants 

in neighborhood of interfaces of heterostructures. We 

calculate these distributions of concentrations of dopants 

under the following condition: value of dopant diffusion 

coefficient in doped area is larger, than value of dopant 

diffusion coefficient in nearest areas. In this situation one 

can find increasing of compactness of field-effect 

transistors with increasing of homogeneity of distribution 

of concentration of dopant at one time. Changing relation 

between values of dopant diffusion coefficients leads to 

opposite result (see Figs. 3). 

It should be noted, that framework the considered 

approach one shall optimize annealing of dopant and/or 

radiation defects. To do the optimization we used recently 

introduced criterion [26-34]. The optimization based on 

approximation real distribution by step-wise function  

(x,y,z) (see Figs. 4). Farther the required values of optimal 

annealing time have been calculated by minimization the 

following mean-squared error 

       
x y zL L L

zyx

xdydzdz,y,x,z,y,xC
LLL

U
0 0 0

1
 .   (12) 

Fig. 2a. Dependences of concentration of dopant, infused in 

heterostructure from Figs. 1, on coordinate in direction, 

which is perpendicular to interface between epitaxial layer 

substrate. Difference between values of dopant diffusion 

coefficient in layers of heterostructure increases with 

increasing of number of curves. Value of dopant diffusion 

coefficient in the epitaxial layer is larger, than value of 

dopant diffusion coefficient in the substrate 

Fig. 2b. Dependences of concentration of dopant, 
implanted in heterostructure from Figs. 1, on coordinate in 
direction, which is perpendicular to interface between 
epitaxial layer substrate. Difference between values of 
dopant diffusion coefficient in layers of heterostructure 
increases with increasing of number of curves. Value of 
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dopant diffusion coefficient in the epitaxial layer is larger, 
than value of dopant diffusion coefficient in the substrate. 
Curve 1 corresponds to homogenous sample and 
annealing time  = 0.0048 (Lx

2+Ly
2+Lz

2)/D0. Curve 2 
corresponds to homogenous sample and annealing time  
= 0.0057 (Lx

2+Ly
2+Lz

2)/D0. Curves 3 and 4 correspond to 
heterostructure from Figs. 1; annealing times  = 0.0048 
(Lx

2+Ly
2+Lz

2)/D0 and  = 0.0057 (Lx
2 +Ly

2+Lz
2)/D0, 

respectively 

 

 

 

 

 

 

 

 
 

Fig.3a. Distributions of concentration of dopant, infused in 

average section of epitaxial layer of heterostructure from 

Figs. 1 in direction parallel to interface between epitaxial 

layer and substrate of heterostructure. Difference between 

values of dopant diffusion coefficients increases with 

increasing of number of curves. Value of dopant diffusion 

coefficient in this section is smaller, than value of dopant 

diffusion coefficient in nearest sections 

Fig.3b. Calculated distributions of implanted dopant in 

epitaxial layers of heterostructure. Solid lines are spatial 

distributions of implanted dopant in system of two 

epitaxial layers. Dushed lines are spatial distributions of 

implanted dopant in one epitaxial layer. Annealing time 

increases with in-creasing of number of curves. 

 

 

Fig.4a. Distributions of concentration of infused dopant in 

depth of heterostructure from Fig. 1 for different values of 

annealing time (curves 2-4) and idealized step-wise 

approximation (curve 1). Increasing of number of curve 

corresponds to increasing of annealing time. 

Fig.4b. Distributions of concentration of implanted dopant 

in depth of heterostructure from Fig. 1 for different values 

of annealing time (curves 2-4) and idealized step-wise 

approximation (curve 1). Increasing of number of curve 

corresponds to increasing of annealing time. 
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Fig. 5a. Dimensionless optimal annealing time of infused 

dopant as a function of several parameters. Curve 1 

describes the dependence of the annealing time on the 

relation a/L and  =  = 0 for equal to each other values of 

dopant diffusion coefficient in all parts of heterostructure. 

Curve 2 describes the dependence of the annealing time on 

value of parameter  for a/L=1/2 and  =  = 0. Curve 3 

describes the dependence of the annealing time on value 

of parameter  for a/L=1/2 and  =  = 0. Curve 4 describes 

the dependence of the annealing time on value of 

parameter  for a/L=1/2 and  =  = 0. 

 

Fig.5b. Dimensionless optimal annealing time of 

implanted dopant as a function of several parameters. 

Curve 1 describes the dependence of the annealing time on 

the relation a/L and  =  = 0 for equal to each other values 

of dopant diffusion coefficient in all parts of 

heterostructure. Curve 2 describes the dependence of the 

annealing time on value of parameter  for a/L=1/2 and  

=  = 0. Curve 3 describes the dependence of the annealing 

time on value of parameter  for a/L=1/2 and  =  = 0. 

Curve 4 describes the dependence of the annealing time on 

value of parameter  for a/L=1/2 and  =  = 0 

 

 We show optimal values of annealing time as 

functions of parameters on Figs. 5. It is known, that 

standard step of manufactured ion-doped structures is 

annealing of radiation defects. In the ideal case after 

finishing the annealing dopant achieves interface between 

layers of heterostructure. If the dopant has no enough time 

to achieve the interface, it is practicably to anneal the 

dopant additionally. The Fig. 5b shows the described 

dependences of optimal values of additional annealing 

time for the same parameters as for Fig. 5a. Necessity to 

anneal radiation defects leads to smaller values of optimal 

annealing of implanted dopant in comparison with optimal 

annealing time of infused dopant. 

 

4. Conclusions 

 In this paper we introduce an approach to 

increase integration rate of element of an four-cascade 

amplifier circuit. The approach gives us possibility to 

decrease area of the elements with smaller increasing of 

the element’s thickness. 
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