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I. INTRODUCTION

Pain is a dynamic occurrence that has been still not clearlyrealized. The standard statement of pain is “a stressful
associated with emotions response generated by probable muscle injury, or characterized in relations of certain
destruction"[48]. Basic research, on the other hand, continuesto advance scientific knowledge of pain, and there is an
active discussion about changing the definition [49-50]. Such kind of pain, known as acute pain, supports in the
identification of potentially hazardous situations, the prevention of tissue damage, and the facilitation of recovery
by preventing behaviours which may cause further tissue damage [50]. Many humans, as well as community
overall, are affected by pain. The growing demand for pain treatment has been aided by advances in medicine:
Many people now a days are suffering diseases that were formerly deadly, such as HIV, cancer, and cardiovascular
disease. However, they will have chronic pain as a result of either the existing disease or the surgery or even after
the sickness has been cleared, by neurological damage caused by the condition [52]. Chemotherapy, Surgery, and
radiotherapy are all common treatments that inflict pain [31]. Persistent pain has serious consequences for the

person in pain, as well as her friends andfamily members.

Scientifically valid pain assessment is needed fordiagnostic process, selecting a suitable treatment, evaluating
progress, and deciding whether such a treatment should be maintained or improved. So that, assessing and
managing painis important besides for providing relief. But also for eliminating together instantaneous and
lasting implication as decreases life eminence however, it also completely undermines the neurological system [41].
Unrelieved pain can rise to chronic pain condition, which also is marked by restricted movement, weakened
immunity, difficulty concentrating, obesity, and sleep disturbances. However, incorrect therapy might cause

complications and complications for patients.

Although advances in technology and knowledge, pain isstill mismanaged [52-54], [69]. However this is a
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prevalent difficult, it disproportionally disturbs patients with weak message skills, that are unable to
communicate overall pain perception and those who’s express has low ecological validity. In the next decade,
autonomous pain assessment systems based on pain behaviours will be developed (video facial terminologies,
movements of body and vocalizations) and Physiological responses would be used to enhance current pain
diagnostic tools in order to achieve better pain treatment.In comparison to conventional assessment methods, it
mightregularly monitor pain. This could lead to improved treatmentoutcomes, such as besides facilitating early
diagnosis for patients being unable to request assistance on their own. Moreover, automatic structures will be
much more accurate rather than a person observer, whom assessment will beaffected with different aspects like as

the patient's appearanceor relationship to the patient [53, 55, 69, 72, 73].

Il. PAIN MECHANISMS AND RESPONSES

Pain is a unique, individual, sensory experience that originates in the brain. Pain is more than just a physical
sensation [56]. The pain feeling should be identified from thecause of the pain (such as muscle destruction caused
by nerveinjury), the pain reaction (vocal communication and non- verbal Indicators) and pain assessment. The

cause of pain is usually identifiable, and it can be managed by intentional painstimulus.

A. Biological Mechanisms

The pain method involves numerous aspects of the neurological structure. The development usually starts
with unpleasant mechanical, chemical cold, heat, or inflammatory stimuli activating sensory nerve cells. These
signals stimulate nociceptors, which become primary sensory neurons with noxious stimuli-detecting specific
receptors. The inducedelectrical impulses are transmitted to the spinal cord throughnociceptive fibers. Excitatory
network and also inhibitory interneuron network in the spinal cord can be stimulated, resulting in a protective
reflexive retraction response. The perceptual exclusionary experience of pain is the resultant ofnext processing of
nociceptive information in several spinal organs. Whereas a nociceptive signal usually causes pain, numerous

factors can influence this response.

B. Biological Responses
Connections among neural network are complex, involved in Pain perceptions and autonomic control [57] because

an increase in sympathetic outflow, leading in modifications in physiological signals that can be measurable [58].

Skin conductance is a signal [59] that changes in responseto pain and is automatically modulated. Even though
sweat organs are just stimulated by sympathetic excitatory sensoryneurons [57], increased sympathetic flow in pain
response leads sweat to be released into apertures on the surface of skin [59]. Heat influences the electrical
performance of the skin (electrodermal, EDA and electrodermal activity), enhancing electrode potential until
underarm sweat is evaporated or reabsorbed, sympathetic nervous system excitation also creates significant
cardiovascular consequences. It has an influence on the heart rate [60], this induces tachycardia and heart rate
irregularity, an indicator of autonomic heart rate control. Especially, Pain massively increases differentfrequencies
power, as evaluated by energy power spectrum. Moreover, Peripheral vascular resistance and stroke volume also

are boosted by pain.

C. Behavioral Responses

Facial expressions, gestures, and speech patterns are characteristics of behavioural pain reactions. Chronic pain
typically results in significant changes in daily behaviour andpublic communication. Presently, various pain-related
facial terms that happen comparatively constantly across a wide variety of laboratory pain situations and
evaluation pain methods [61]. Consequently, the intensity of facial movement’s increases as the strength of painful
stimuli increases [62]. The majority of pain-related bodily motions help to defend against future harm and to
relieve unpleasantness. Pain behaviour also includes paralinguistic vocalisations (laughing, groaning, and

moaning) and sound quality features including loudness, and insecurity detected throughout voiced report [61].
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D. Emotion and Pain

Pain is classified as either a sensory or also an emotionalreaction. It has an emotive element that covers a wide
range of feelings, the majority of which are destructive and connected to the discomfort to potential consequences.
Aggression and sorrow also performance key roles,particularly in chronic pain [62]. Lastly, physiological and
behavioural responses indications and their groupings, the issue of whether pain can be consistently and

objectively separated from its associated emotions remains unresolved.

I1l. TOOLS FOR PAIN ASSESSMENT IN CLINICALAPPLICATION

In clinical practice, pain is typically based mainly on the patient's report intensity and variables that relieve and
increase the pain. Self-reporting is the explicit presentation of pain associated information through a person in
pain, generally through verbal or gestures such as directing to an illustrationthat signifies their feelings in answer
to a request. Patient careregulations underline that report is the utmost reliable method of measuring pain if the

person is able to speak [63-69].

IV. DATASETS
The best frequently used database is the BioVid Heat PainDatabase [35]. It was acquired through a partnership

between the University of Magdeburg's Neuro-Information groups. Total 90 patients were submitted to four
intensities of experimentally induced heat sensitivity. Table 1 represents the properties of publicly accessible

datasets for pain recognitionresearch.

V. METHODOLOGIES OF PAIN RECOGNITION

We directed an efficient literature search, as described inintroduction, to evaluate the existing automated pain
recognition approaches. In the next subsections, we explore the recognition input systems and the system

processingtechniques.

A. Modalities and Sensors

Pain assessment needs at minimum single sensor information stream to share information to the machine. A
medium of this type is sometimes referred to as a modality. The most significant pain recognition modalities may
beclassified into two parts: behaviour and physiology. Face expression; body motions like rubbing, guarding, and
skull movements; vocalisations and vocal arguments that can be shared by communication and may contain self-
report information are all examples of behavioural modalities. In thephysiology area, brain action, cardiac action are
all of interest. A uni-modal system consist of only one modality; a multimodal approach takes input from multiple

modalities.

1) Camera-Based Methodology: To date, the largemajority of pain detection systems have relied at camera imagery
with facial expressions. The majority of existing painrecognition research focused on Facial expression modality. In
general, cameras have a narrow range of view, thus understanding images is much more complicated than
processing other instrument inputs. Cameras, on the other hand, are non-contact devices that may be more

comfortable or patients and more efficient for healthcare workers thancontact-based sensors [42].

2) Contact-Sensor Techniques: The direct interactionsensors EDA and ECG have been the second-most extensively
utilised. Since, the introduction of the BioVid database, followed by sEMG of the trapezius muscle-Sensor techniques.
Pain was identified using a variety of physiological indicators acquired from electronic flow spreadsheets in

institutions. EDA consistently outperforms the only one modalities that have evaluated [25], [33].
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TABLEI. Databases for Pain Recognition that are available to the public for research
Database Subjects Stimuli Data Modalities (D)
BioVid Heat Total 90 14k heat pain (20 repetitions 4 Video signal, biomedical
Pain[30], [66], adul | intensities2parts 90 adult patient) indicators
[67] tparticipants
BP4D- Total 41 adults | emotion elicitation, 41 cold pressor Color and 3D video of face

Spontaneous [64]

task

pain

BP4D+ Total 140 adults | emotion elicitation ,140 cold pressor Face of color video 3D and
[68] task thermal,medical signal such as
respiration
rate, blood pressure, heart rate
andEDA
UNBC Total 25 Total 200 video signal, Face video such as low
McMaster patients resolution,social interaction
Shoulder Pain shoulder pain and talking
[65]
MIntPAI 40 stimuli in 4 intensities of 2 trials Fave video of color, thermal
N[41] Total 20 adults and20 participant of 2k electrical anddepth

TABLEII. Bio-Vid Database has been used to evaluate Pain Recognition systems

Author Feature Classification Model
M. Amirian et al.[71] Descriptor with time series statics signal. Radial Basis
Function
networks,
S. Gruss et al.[72] 159 features based on statistical analyses radial basis function kernel
andSVM
M. Kachele et al. [22] Head pose, peak height and difference, B.W. and SVM and Random forest
entropy.
M. Kachele et al. [23] Physiological signal and geometric-based Random Forest (RF)
andappearance-based from video.
M. Kachele et al.[24] Mean and the standard deviation from EMG. KNN and Random forest

M. Kachele et al. [25]

frame level, skewness, spectral entropy,

entropy

anddensity

Random Forest

Lopez-M. 17 [26]

calculated the

Skin conductance (SC)
andElectrocardiogram (ECG) features

multi-task neural
network(MT-
NN)

Lopez-M.18 [27]

Mean, max, range, AUC

Recurrent neural
network-based
regression algorithm

Walter 14 [28]

Shannon entropy, and heart rate

Decision Trees, K-NN, and
SVMs.

Walter 15 [29]

also

Features based on signal amplitude and frequency

based on entropy, stationary and statistical
moments.statistical parameters from video signal

KNN and Random forest
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Werner 14 [31] Features of amplitude from (GSR) ,frequency Random Forest
featuresfrom (EMG) at trapezius muscle and three
heart rate
variability features from (ECG)
Werner 17 [32] measure facial activity and expressiveness Random Forest
Yang 16 [18] texture information form face Support Vector
Machine(SVM)
F. Pouromran [70] 22 features capture properties such as linear and Support Vector Regressor,
nonlinearautocorrelation, successive differences. XGBoost, ~ KNN,
Neural
Networks

B. Features and Models

The raw data is analysed for patterns that can be used to predict a pain state in the person being studied.
Features are collected from the input signal, which are a more exclusionary and generally lesser dimensional
representation. There are an amount of diverse kinds of features classified as (1) learned features, (2) generic
features, (3) hand-designed. Generic features are useful in other domains, but pain recognition they not provide
better result. Such as, LBP image features. Hand- crafted features are constructed for a specific objective through
dedicated knowledge; they are generally simple to interpret and low-dimensional. Another feature such as use
during the training procedure, the extracted features is optimized for the specific task termed as learned features.

These are typically higher dimensionality and hard to interpret.

1) Face Expression Features: Feature extraction is aprocess in the processing system during camera-based facial
pain expression analysis. It might include 1) identifying facial characteristics (points around the mouth, brows and
eyes and among others) 2) To improvement invariance to translation, scaling, and rotation, utilize facial texture. A
range of frame-based features have utilized to pain recognise [1], [8], [11], [15-16], [19], [20], [35]; simplest pixel
representations represent illustrations using generic appearance features [3], [21], [37], LBP [8], [12], [16], [18], [20],
[35], HOG [1], [6],[12], [34], Discrete Cosine Transform (DCT) [35], Gabor [9],[12], [20], [39], [44], Scale Invariant
Feature Transform(SIFT) [10], [14], neural network-learned features [7], [13], [17], [21], [41].

2) Physiological Features: All other sensor signals, apartfrom camera images and neuroimaging, are interpreted as
time signal. In the evaluation of sSEMG, EDA signals, we identify numerous variations of Time series signal
Descriptors (TSD). Walter [48] investigated the effectiveness of amplitude, variability, and frequency. sEMG
(corrugator, zygomaticus muscle and trapezius) and stationarity, EDA frequency, entropy, linearity and, entropy
features for pain recognition. Based on physiological objectives, EDA has divided into two aspects while retrieving

information from both components independently [23], [25], [28], [33].

3)  Recognition Models: After feature extraction, the framework that relates the features to the implicit pain
status is the second essential processing component. The model may also include data fusion, especially for
system integration in a multimodal system, which can be done at thedecision, feature, or intermediate levels. The
most of methodsutilise Support Vector Machines (SVMs) to categorise pain, either linearly or with a Radial Basis
Function (RBF) kernel [11], [28], [30], [38], [39], [42]. Relevance Vector Regression generates continuous-valued
output [1], [5].and related Support Vector Regression [2], [4], [16], [20] models. Random Forests are another
popular model (RF) [29], [32], [35, [36], [41] variations of Conditional Random Fields

(CREF) [3], [8], [15], Nearest Neighbor (NN) classifiers [6],

[19], [24], [36], [37], and various neural networks. Convolutional Neural Networks are one of the CNN
architectures utilised for pain identification [13], [17], [21], [41], Radial Basis Function (RBF) networks [25], Long
Short-Term Memory (LSTM) networks [8], [13], [41], Data fusion is a process of integrating various modalities,

features,judgement score, or even other information sources to createa single final prediction [22], [23], [25], [33].
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C. Ground Truth

Different objectives being explored by the evaluated automated pain assessment systems. The most common
are evaluating the existence of pain (a binary classification) and assessing the intensity of pain. Such systems
require adequateground truth for development and evaluation. The majority ofother study employed the provided
stimulus as ground truth, either with [46], [47] or instead of customized assessment [39], [40], [43]. The most of
these studies aim to investigate the occurrence of pain or anticipate the intensity of symptomsin separate categories
[40],[41], [45], The later researches revealed that an integrated computer vision system outperformed skilled

human observers in identifying realisticfrom manufactured pain signals on the face.

V1. CONCLUSION

Health services are complicated processes which include interaction among people, organizations, and
equipment. Researcher kept in mind these information as an initial phaseto design an intelligent health-care
system. This article provides a complete overview of pain assessment techniquesthat depend on several machine
learning techniques. The dadaset utilized for pain assessment was consider as video or imagebased facial expression

or biomedical signal.
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