
M. Karthick et.al (2022)

163

Enhancing dynamic location data by means of d-toss in spatial data heuristic

partition

M. Karthick1, T. Anjali2

1Assistant Professor, Nandha College of Technology, Erode.

2PG scholar, Nandha College of Technology, Erode.

Corresponding author.

Correspondence: M. Karthick

E-mail: magukarthik@nandhatech.org

Article info
Received 28 th August 2022

Received in revised form 19

September 2022 Accepted

6 October 2022

Keywords
 voronoi diagram, D-Toss,

Heuristic Partition.

Retrived from: https://sajet.in /

index.php/ journal/ article/ view/235

Abstract

In many applications, moving object datasets are prevalent. To

deal with such dynamic datasets, specialised moving object

index structures preserve location changes gradually and process

only a portion of the updates using position approximation

methods. Instead of being updated incrementally, static indexes

are occasionally remodelled from scratch. Throwaway indices

have been demonstrated to outperform specialised moving-

object indices that maintain location updates gradually. The only

distributed throwaway index (D-MOVIES), an extension of a

centralised solution, doesn't scale out since the number of servers

will expand, particularly throughout the query process portion,

and throwaway indices suffer from measurability as a result of

their single-server design. a distributed disposable spatial index

structure (D-ToSS) that employs several servers while scaling.

Since it fully utilises the multi-core CPU available on each server,

an intelligent partitioning strategy also scales up. D-ToSS

includes both numerous servers and CPUs with many cores on

each server. It quickly creates voronoi diagrams and Heuristic

Partition rules, and because of its flat form, it is ideal for parallel

processing. The information's access management enables roles

to access tuples that respond to authorised predicate sliding-

window queries. For example, a decentralised server has a

tendency to demonstrate a 25x speedup in query processing

compared to D-MOVIES through an experiment, and this

difference gets bigger as the number of servers rises. D-ToSS

creates a Voronoi diagram to represent this ideal acceptable data

processing.

1.1 EXISTING SYSTEM

 Moving-object index structures process only a small portion of the updates using position

approximation methods and maintain location updates incrementally. However, because to their

single-server nature, all of these methods have a limited potential to scale. The issue with static

 South Asian Journal of Engineering and Technology Research Article

 Open Access Full Text Article 123(2022) 163-166 DOI: 10.26524/sajet.2022.12.53

mailto:magukarthik@nandhatech.org
http://www.elsevier.com/locate/molstruc

M. Karthick et.al (2022)

164

indexes is that the majority of them were created for the centralised paradigm, which is constrained

by the capabilities of a single server. However, it is difficult to create a distributed throwaway index

that scales over numerous servers for the following reasons. First, because traditional top-down

search unduly overburdens the servers near the tree root, tree-based indices cannot be implemented

directly in a distributed system by merely assigning an index node to a server.

 Second, it is crucial to design equal-sized partitions because otherwise, the server hosting the

largest partition will act as a bottleneck, slowing down the process of building an index. Third, query

throughput is decreased because if the partitioning method does not maintain the spatial vicinity of

the objects, the queries must be sent to every server to assure accuracy.

 Finally, static geographic partitioning techniques that allocate each server to a zip code, city,

or grid cell will eventually lead to an imbalance among the servers because data items are always

moving. Recent survey papers have the following issue: High update workload throwaway indexes.

1.1.1 Limitations

It is classified as a throwaway index by the survey's static read-only index, which is updated

on a regular basis. In order to answer queries precisely, MOVIES periodically creates a linearized kd-

tree using a sorted z-ordered sequence after collecting updates in a buffer (hash table). This method

yields approximative results and necessitates extra post-processing. Due to their single-server

designs, these systems also have a limited potential to scale. A distributed version of MOVIES, which

we refer to as D-MOVIES, was created to overcome the scaling problems. In more detail, it hashes-

partitions data objects by distinct object ids among several nodes and then simultaneously executes

the centralised index construction process at each server. Our intended applications, data objects, run

short-range queries to obtain a sense of their environment.

As a result of the higher query coordination cost, query throughput decreases as the number

of nodes increases. For the processing of spatial queries in parallel, distributed hierarchical index

structures like the R-tree-based SD-R tree and the kd-tree-based k-RP have been proposed. Because

the usual top-down search unduly overburdens the nodes close to the tree root, the main issue with

tree-based techniques is that they cannot scale. Using the MapReduce programming model, a novel

build-first-distribute-later strategy was used to describe the distributed VD generation problem.

2.1 PROPOSED SYSTEM

 Consider distributing throwaways, temporal spatial index that scales almost linearly during

index building and during the handling of Slide Window queries. The core element of our index,

known as (for Distributed Throwaway Spatial Index Structure), is a Voronoi diagram (VD), where we

distribute the construction of a Voronoi cell (VC) for each data object using a Voronoi-based

partitioning technique and a heuristic partitioning algorithm. Due to its flat structure, which is well

suited for parallel processing and the fact that each Voronoi cell can be built independently in

parallel, as well as the fact that it is a very effective data structure for resolving a wide range of spatial

queries, the VD was chosen as the index structure and partitioning technique.

The fundamental difficulty in creating distributed voronoi diagrams is that due to

partitioning, voronoi cells may not be correct because some of their nearby data objects may be

located on a different server. Heuristic partition algorithms can be used to solve this issue. Building a

global Voronoi across all the data items on a single server, then dividing it among the servers for

query processing, is the logical way to solve this problem.

M. Karthick et.al (2022)

165

The restricted scalability of this build-first, distribute-later strategy is a drawback. We provide

a novel three-step disseminate first-build later scalable framework to address this issue. The sliding-

window queries that provide each role's authorised view of the data stream. The multi-core

architecture of each server node.

 All servers communicate with each other in parallel.

 Multi-core parallelization during the local index (local VD) construction.

 Efficient partition creation in Heuristics Partition.

3. Module Description

3.1 Voronoi Diagram Construction Module

Build a single global Voronoi Diagram by simultaneously creating partial Voronoi diagrams

(PVD) in each node and merging the (partial) results in a single node. Each node has a local voronoi

diagram that can be used to quickly find a data object during query time. An adaptive partitioning

method based on Voronoi that quickly picks up new information from the dataset and distributes the

objects among the servers while maintaining their geographic proximity and distributing the load

among the servers globally. Second, create local Voronoi diagrams (local VDs) utilizing multiple

threads, where each Voronoi cell is generated independently by a thread, to make use of each server

node's multi-core architecture.

3.2 Pivot Selection and Partition Module

Calculate the sum of the distances between each pair of objects, then select the set with the

highest sum as the pivots. Due to spatial (QI attributes), temporal (time-stamp attribute), or both

temporal and spatial overlaps, a partition may contribute a false-positive tuple to a predicate sliding-

window query.

3.3 Data Object Distribution Module

Using a voronoi cell diagram or a heuristic partition algorithm, the data object was separated

into partitions of similar size. Finally, all data is transferred to every other node where a local voronoi

diagram is independently built. Each partition's data will be stored locally and maintained together

with a local overall index for the global node name global index.

3.4 Query Module

 Range and Distributed k nearest neighbor spatial queries to be evaluated using D-ToSS (Dk-

NN). The queries can be sent to any system node using D-ToSS. The Dk-NN technique matches

nearest data for global partition in a distributed manner and finds the result before forwarding it to

the user.

CONCLUSION

 To index extremely dynamic moving object data, use D-ToSS. The major goal of a D-ToSS is

to avoid updating indexes with each position update from moving objects by creating short-lived

Voronoi based index structures in combination with Slide Window Query. D-ToSS is a fully

decentralised parallel and distributed architecture that makes advantage of numerous server nodes in

a cluster to quickly construct the throwaway indexes. Unlike tree-based techniques, the efficient

parallel search algorithm (DKNN) allows queries to be sent to any node in the cluster without first

looking for the node that might contain the resultsets. This project was effectively designed for SQL

server and C#.net.

M. Karthick et.al (2022)

166

REFERENCES

1. Abbadi A E, Agarwal D, Riedewald M, and Stanoi I, (2001), ‘Discovery of Influence Sets in

Frequently Updated Databases’, Proc. Very Large Database, pp. 99-108.

2. Akdogan, Banaei-Kashani F, Demiryurek U, and Shahabi C, (2010), ‘Voronoi-Based Geospatial

Query Processing with MapReduce’, Proc. Cloud Computing Technology Science, pp.9- 16.

3. Akdogan A, Demiryurek U, and Shahabi C, (2014), ‘Toss-it: A Cloud Based Throwaway Spatial

Index Structure for Dynamic Location Data’, proc. Mobile Data Mining, pp.39-42.

4. Angel P and Gold, (2006), ‘Voronoi Hierarchies’, Geographic Information Science, pp. 99–111

5. Barahmand S, and Ghandeharizadeh S, (2013), ‘BG: A Benchmark to Evaluate Interactive Social

Networking Actions’, Proc. Conference Innovative Data System Res.

6. Blunschi L, Dittrich J, and VazSalles M A, (2011), ‘MOVIES: Indexing Moving Objects by

Shooting Index Images’, Geo-informatics, vol. 15, no. 4, pp. 727–767.

7. Bentley J L, and Finkel R A, (2000) ‘Quad Trees a Data Structure for Retrieval on Composite

Keys’, ActaInformatica ,vol. 4, pp. 1–9.

8. Cao T, Demers A, Salles V and sowell B, (2014), ‘An Experiment Analysis of Iterated Spatial Joins

in Main Memory’, proc. Very Large Data Bases, pp.1882-1893.

9. Cary, Hristidis V, Rishe N, and Sun Z, (2009), ‘Experiences on Processing Spatial Data with Map

Reduce’, Proc. Science Statistic Database Manage, pp. 302–319.

10. Chen S, Nascimento M A, Ooi B C, and Tan K.L, (2008), ‘A Self-Tunable Spatio-Temporal B+ Tree

Index for Moving Objects’, Proc. Special Intelligent Group Management Data, pp. 29–42.

11. E.prabhakar, V.S.Suresh kumar, Dr.S.Nandagopal ‘Mining better advertisement tool for

government schemes using machine learning’,International Journal of psychosocial

Rehabilitation,pp:1122-1135,Issue 4, Volume23,2019

12. V.S.Suresh kumar , E.Prabhakar, Dr.S.Nandagopal ‘Likihood weighted bagging ensemble

approach to analyze public sentiment about covid -19 pandemic’,International journal for

mechanical engineering ,pp:11.01-1107,Issue-3,Volume-6,2021

13. V.S. Sureshkumar, A.Chandrasekar, “Fuzzy-GA Optimized Multi-Cloud Multi-Task Scheduler

For Cloud Storage And Service Applications”, International Journal of Scientific & Engineering

Research , Volume 4, Issue3, March-2013.

14. V.S. Sureshkumar “Optimized Multicloud Multitask Scheduler for Cloud Storage and Service by

Genetic Algorithm and Rank Selection Method“ ,International Journal of Advanced Science

Engineering and Technology , pp:2-7, Issue 4, volume 3,2014.

15. V.S. Sureshkumar, D. Joseph Paul, N.Arunagiri, T.Bhuvaneshwaran , S,Gopalakrishnan “Optimal

Performance And Security Of Data Through FS- Drops Methodology” ,International Journal of

Innovative Research In Engineering Science and Technology , pp:1-7, Issue 3, volume5,2017

