
 

IDENTIFYING AND MITIGATING COMMON WEB APPLICATION 

VULNERABILITIES  
 

Dinesh Gopal Dommeti1, Persis Voola2* 
1BTech CSE V Semester, Adikavi Nannaya University, College of Engineering, Rajamahendravaram, AP, 

India. 
     2*Associate Professor, Adikavi Nannaya University, College of Engineering, Rajamahendravaram, AP, India. 

 
Corresponding author.  

Correspondence: Persis Voola 

E-mail: persisvoola.cse@aknu.edu.in 

 
Article info 
Received 28th April 2023 Received  

in revised form 16 June 2023  

Accepted 19 August 2023 

 

Keywords 
Web Application Security, Vulnerabilities, 

SQL Injection, Cross-Site Scripting, 

Authentication, Burp Suite 

 
https://sajet.in/index.php/journal/ 

article/view/287 

Abstract 

Web application vulnerabilities involve flaws or weaknesses in web-

based applications. This study employs Damn Vulnerable Web 

Application (DVWA) and Portswigger as testbeds, using the Burp 

Suite proxy tool to intercept and analyse web traffic. The aim is to 

identify and exploit common vulnerabilities to enhance application 

security. Key vulnerabilities explored include Authentication issues, 

SQL injection, Cross-site scripting (XSS), and Cross-site request 

forgery (CSRF). The study offers insights into preventing such 

exploits by securing applications before real-world attacks occur. 

 

1. Introduction 

Web applications are integral to modern internet services, but they are often 

targeted by attackers exploiting various vulnerabilities. This study systematically 

explores common web application vulnerabilities using DVWA and Burp Suite. Despite 

the growing awareness of vulnerability databases in the software engineering research 

community, no comprehensive literature survey has been conducted on their application 

in software development [1]. The objective is to demonstrate practical exploitation 

techniques and provide recommendations for securing web applications. 

The increasing reliance on web applications for critical services has made them 

prime targets for cyber-attacks. These applications, while offering convenience and 

efficiency, often harbour security flaws that can be exploited by malicious actors. 

Vulnerabilities such as SQL injection, Cross-site scripting (XSS), and Cross-site request 

forgery (CSRF) can lead to unauthorized access, data breaches, and other significant 

security incidents. Effective vulnerability assessment and mitigation strategies are 

essential to safeguard these applications from potential threats. 

                South Asian Journal of Engineering and Technology                          Research Article 

 

                  Open Access Full Text Article                                         132(2023) 1-7                                                     DOI: 10.26524/sajet.2023.13.9 

 

 

 

 

 

mailto:persisvoola.cse@aknu.edu.in
https://sajet.in/index.php/journal/
http://www.elsevier.com/locate/molstruc


Dinesh Gopal Dommeti et.al (2023) 

 

2 
 

Key vulnerabilities and case studies are presented, encompassing authentication 

issues, SQL injection, Cross-site scripting (XSS), and Cross-site request forgery (CSRF). 

Each case study includes an analysis of practical exploitation examples and offers 

strategies for prevention. Additionally, recommendations for integrating advanced 

detection techniques, continuous security assessments, and the use of automated 

security tools are provided to proactively address and mitigate emerging threats. 

 

2. Key Vulnerabilities and Case Studies 

2.1.1 Authentication 

Authentication is the process of verifying the identity of users. Weak 

authentication mechanisms and poor implementation can lead to vulnerabilities, 

allowing attackers to bypass security. Multi-factor authentication (MFA) enhances 

security but can be flawed if not implemented correctly. 

 

2.1.2 Case Study: Flawed Two-Factor Verification Logic 

An attacker could log in using their credentials but change the value of the account 

cookie to any arbitrary username when submitting the verification code. This allows 

access to arbitrary user accounts without knowing their passwords. 

2.1.3 Exploit Execution 

 Create an account on the vulnerable website. 

 Log in to the account and investigate the 2FA verification process. 

 Change the verify parameter in the request to the victim's username. 

 Submit an invalid 2FA code and brute-force the verification code to gain access. 

2.1.4 Analysis and Prevention 

Authorizing access to the public cloud has evolved from simple user and password 

authentication to two-factor authentication (TOTP), which adds a unique code entry, and 

while multi-factor authentication (MFA) is considered a robust security measure, its 

effectiveness relies on the proper implementation of each factor; flaws in the second 

factor's validation logic can allow attackers to bypass it, making MFA ineffective due to 

common issues such as predictable or reusable verification codes, insecure transmission 

of codes, and improper session handling after verification, thus highlighting the need for 

an in-depth examination of implementation to identify weaknesses and guide developers 

toward more secure practices [6]. 

2.1.5 Prevention Strategies: 

 Use Time-based One-Time Passwords (TOTP): Implement TOTP algorithms that 

generate a unique code for each authentication attempt. 

 Secure Transmission: Ensure that all authentication data is transmitted over 

secure channels (e.g., HTTPS). 

 Session Management: Properly manage user sessions, invalidating old sessions 

after MFA is completed. 

 Brute-force Protection: Implement mechanisms to detect and block brute-force 

attacks on MFA codes. 



Dinesh Gopal Dommeti et.al (2023) 

 

3 
 

2.2 SQL Injection (SQLi) 

SQL injection is a code injection technique that exploits software vulnerabilities by 

manipulating SQL queries, allowing attackers to execute arbitrary SQL code [3]. 

2.2.1 Case Study: Error-Based SQL Injection 

Attackers can retrieve detailed database error messages, which provide 

information about the database structure. This enables the attacker to craft precise 

queries to exploit the database further. 

2.2.2 Exploit Execution 

 Identify a vulnerable input field that interacts with the database. 

 Inject SQL code to manipulate the query and retrieve database information. 

 Use the extracted information to craft further attacks. 

2.2.3 Analysis and Prevention 

SQL injection attacks exploit the interaction between web applications and 

databases. They typically involve inserting or "injecting" malicious SQL code into input 

fields that are then executed by the backend database. This can lead to unauthorized 

access to data, modification of data, and even the execution of administrative operations 

on the database. Advanced SQL injection techniques include blind SQL injection, where 

attackers infer information through the web application's responses without receiving 

direct feedback, and second-order SQL injection, which exploits stored data that is later 

processed insecurely. 

2.2.4 Prevention Strategies: 

 Parameterized Queries: Use parameterized queries (prepared statements) to 

separate SQL code from data. 

 Stored Procedures: Implement stored procedures to encapsulate SQL logic. 

 Input Validation: Validate and sanitize all user inputs to ensure they conform to 

expected formats. 

 Least Privilege Principle: Restrict database user privileges to only those necessary 

for the application to function. 

 Error Handling: Avoid displaying detailed database error messages to users. 

2.3 Cross-Site Scripting (XSS) 

Cross-site scripting (XSS) attacks involve injecting malicious scripts into web 

pages, often due to improper sanitization of user inputs, which can steal session cookies, 

deface websites, or redirect users to malicious sites, causing problems for both users and 

server applications [4]. 

2.3.1 Case Study: Reflected XSS 

Reflected XSS occurs when user input is immediately returned by the application 

without proper validation or encoding. 

2.3.2 Exploit Execution 

 Identify a vulnerable input field. 

 Inject malicious JavaScript code. 

 The script executes in the user's browser, performing actions on behalf of the user. 

 



Dinesh Gopal Dommeti et.al (2023) 

 

4 
 

2.3.3 Analysis and Prevention 

Reflected XSS is one of the most common forms of XSS attacks. It typically occurs 

when data provided by a web client is used immediately by server-side scripts to generate 

a web page without properly sanitizing the input. This can lead to the execution of 

arbitrary JavaScript code in the context of the user's session. To prevent XSS, developers 

should employ input validation, output encoding, and use security libraries that 

automatically sanitize inputs. Content Security Policy (CSP) can also be implemented to 

restrict the sources from which scripts can be executed. 

2.3.4 Prevention Strategies: 

 Input Validation: Validate all user inputs to ensure they conform to expected 

formats. 

 Output Encoding: Encode data before rendering it in the browser to prevent script 

execution. 

 Security Libraries: Use libraries and frameworks that automatically handle input 

sanitization and output encoding. 

 CSP: Implement Content Security Policy to restrict the sources of executable 

scripts. 

 Regular Audits: Conduct regular security audits and code reviews to identify and 

fix XSS vulnerabilities. 

2.4 Cross-Site Request Forgery (CSRF) 

Cross-Site Request Forgery (CSRF) is a significant web exploit that tricks victims 

into submitting malicious requests by inheriting their identity and privileges, thereby 

performing undesired functions on their behalf, and it continues to pose security risks 

even on highly ranked websites [5]. 

 

2.4.1 Case Study: CSRF Attack on Banking Application 

An attacker can craft a request to transfer funds from the victim’s account to their 

own. When the victim, who is logged into their banking account, unknowingly clicks the 

link or visits a page containing the malicious request, the transaction is completed. 

2.4.2 Exploit Execution 

 Craft a malicious request to transfer funds. 

 Embed the request in an image tag or hidden form on a website. 

 The victim, while logged into their banking account, clicks the link or visits the 

page, causing the transfer to occur without their consent. 

2.4.3 Analysis and Prevention 

CSRF attacks exploit the trust that a web application has in the user's browser. 

When a user is authenticated, the browser automatically includes authentication 

information (like cookies) with each request. Attackers leverage this behavior by tricking 

users into making unwanted requests. To prevent CSRF attacks, developers should 

implement anti-CSRF tokens, which are unique to each session and request, making it 

difficult for attackers to predict. Additionally, requiring re-authentication for sensitive 

operations and employing same-site cookie attributes can enhance security. 



Dinesh Gopal Dommeti et.al (2023) 

 

5 
 

2.4.4 Prevention Strategies: 

 Anti-CSRF Tokens: Implement anti-CSRF tokens that are unique for each session 

and each request. 

 Same-Site Cookies: Use same-site cookie attributes to prevent cookies from being 

sent with Cross-site requests. 

 Re-authentication: Require users to re-authenticate for sensitive operations. 

 User Interaction Verification: Verify that requests originate from trusted user 

interactions, such as by checking referrer headers. 

 Security Libraries: Utilize security frameworks and libraries that include built-in 

CSRF protection mechanisms. 

3. Conclusion 

Understanding and mitigating web application vulnerabilities is crucial for 

maintaining security. This study highlights common vulnerabilities, providing practical 

exploitation examples and defensive strategies. Future work should focus on advanced 

detection techniques and continuous security assessments to stay ahead of emerging 

threats. The integration of automated security tools and regular security audits can help 

in identifying and rectifying vulnerabilities before they are exploited by malicious actors. 

4. Further Research 

As web applications evolve, so do the techniques employed by attackers. To stay 

ahead of these threats, future work should focus on integrating advanced technologies, 

particularly artificial intelligence (AI) and machine learning (ML), to enhance the security 

posture of web applications. These technologies can provide dynamic, real-time 

protection by identifying and mitigating vulnerabilities more effectively than traditional 

methods. 

4.1 Automated Vulnerability Detection and Response 

AI and ML can be used to develop systems that automatically detect and respond 

to vulnerabilities. By analysing patterns in web traffic and application behaviour, these 

systems can identify anomalies indicative of potential attacks. Machine learning 

algorithms can be trained on vast datasets of known vulnerabilities and attacks, enabling 

them to recognize and respond to new, previously unseen threats. 

Example: 

 A machine learning model could be trained to detect SQL injection attempts by 

analysing query patterns. Once a potential attack is identified, the system could 

automatically block the request and alert security personnel. 

4.2 Behavioural Analysis and Anomaly Detection 

Anomaly detection models, powered by AI, establish a baseline of normal user 

behaviour and flag deviations—such as unusual login locations or atypical transaction 

patterns—triggering alerts and preventive measures, and proving especially effective 

against sophisticated attacks beyond traditional signature-based detection [2]. 

Example:  

An AI system could detect a brute-force attack by identifying an unusually high 

number of login attempts from a single IP address within a short period. The system could 

then automatically implement rate-limiting or temporary IP blocking. 



Dinesh Gopal Dommeti et.al (2023) 

 

6 
 

4.3 Enhanced Authentication Mechanisms 

AI can improve authentication processes by implementing adaptive 

authentication. This method evaluates the risk level of each login attempt based on 

various factors, such as the user’s behaviour, device, and location. High-risk attempts can 

be challenged with additional authentication steps, such as biometric verification. 

 

Example:  

If a user attempts to log in from an unfamiliar device or location, the AI system 

could require additional verification, such as a fingerprint scan or a one-time password 

sent to the user's mobile device. 

4.4 Predictive Analytics 

Over the past decade, predictive analysis has become increasingly important in 

decision support systems, utilizing statistical algorithms, and IT tools to identify 

dependencies and patterns in data sets while reducing complexity. In essence, it aims to 

build models that determine the probability of future events based on historical data for 

new situations [7]. 

Example:  

By analysing past security incidents and current threat intelligence, an AI system 

could predict which vulnerabilities are most likely to be targeted next and prioritize their 

remediation. 

4.5 Integration with DevSecOps 

Incorporating AI into the DevSecOps pipeline ensures that security is integrated 

throughout the software development lifecycle. AI-driven tools can perform continuous 

code analysis, identifying and addressing vulnerabilities as the code is being written. This 

reduces the risk of vulnerabilities making it into production. 

 

Example:  

An AI-powered static code analysis tool could automatically scan code for common 

vulnerabilities, such as buffer overflows or improper input validation, and provide 

developers with real-time feedback and recommendations. 

 

ACKNOWLEDGEMENT 

I would like to express my heartfelt gratitude to everyone who assisted in the 

completion of this research paper. I am fortunate to pursue my Bachelor's Degree at 

Adikavi Nannaya University, which provided excellent facilities in Computer Science and 

Engineering. Special thanks to Dr. V. Persis, Associate Professor & Principal, and the Head 

of the Department for their encouragement and guidance. I am also grateful to the 

management for the opportunity to work on "Identifying and Mitigating Common Web 

Application Vulnerabilities." Lastly, I appreciate the support from the review committee 

and faculty members throughout this research. 

 

 

 



Dinesh Gopal Dommeti et.al (2023) 

 

7 
 

Funding  

No funding was received to carry out this study. 

 

References 

1. S. S. Alqahtani, E. E. Eghan, & J. Rilling, “SV-AF—A Security Vulnerability Analysis 

Framework”, IEEE, 27th International Symposium on Software Reliability 

Engineering (ISSRE), pp. 219-229, 2016. 

2. K. G. Maheswari, & R. Anita, “An Intelligent Detection System for SQL Attacks on Web 

IDS in a Real-Time Application” Springer, Proc. of the 3rd International Symposium 

on Big Data and Cloud Computing Challenges (ISBCC–16’,) pp. 93-99, 2016. 

3. R. V. Bhor, & H. K. Khanuja, “Analysis of web application security mechanism and 

Attack Detection using Vulnerability injection technique”, IEEE, International 

Conference on Computing Communication Control and automation (ICCUBEA), pp. 

1-6, 2016. 

4. I. Hydara, A.B.M. Sultan, H. Zulzalil, N. Admodisastro, “Current state of research on 

Cross-site scripting (XSS)” – A systematic literature review Information and Software 

Technology, 58 (2015), pp. 170-186. 

5. Nuel Siahaan , Mario Rufisanto , Raymond Nolasco , Said Achmad , Chrisando Ryan 

Pardomuan Siahaan, “Study of Cross-Site Request Forgery on Web-Based 

Application: Exploitations and Preventions” pp.1-7, 2023. 

6. I. Gordin, A. Graur, A. Potorac, “Two-factor authentication framework for private 

cloud” 2019 23rd International Conference on System Theory, Control and 

Computing (ICSTCC) (2019), pp. 255-259. 

7. Maciej Wach , Iwona Chomiak-Orsa, ” The application of predictive analysis in 

decision-making processes on the example of mining company’s investment 

projects”, pp. 5058-5066, 2021. 
 


