

152(2025) 33-45

DOI: 10.26524/sajet.2025.15.5

Impact of Hospital Wastewater on the Spread of Antimicrobial Resistance Genes

Mouneshree Gowda, Aruna G.L*

Post Graduate Department of Microbiology. Maharani's Science College For Women (Autonomous), Mysuru, Karnataka 570005

Corresponding author. Correspondence: Aruna G.L E-mail: microarunagl@gmail.com

Article info

Received 29th October 2024 Revised form 16th January 2025 Accepted 9th February 2025

Keywords

Client experience/fulfilment, CCRF, cost, planning

https://sajet.in/index.php/journal/article/view/313

Abstract

Antimicrobial resistance (AMR) has emerged as a major global health threat, with environmental dissemination of resistance genes posing a critical challenge. Hospital wastewater has been increasingly recognized as a significant reservoir and transmission route for antimicrobial resistance genes (ARGs) due to its complex composition, including high concentrations of antibiotics, disinfectants, and resistant pathogens. This paper explores the multifaceted role of hospital effluents in promoting the selection, amplification, and dissemination of ARGs into the environment. It examines the mechanisms of horizontal gene transfer, the involvement of mobile genetic elements, and the contribution of biofilms in enhancing resistance propagation. Advanced detection techniques such as qPCR and metagenomic sequencing are discussed in the context of monitoring ARG prevalence. The environmental and public health implications of untreated or inadequately treated hospital wastewater are highlighted, including contamination of natural ecosystems and potential exposure to resistant bacteria. Current mitigation strategies, such as on-site pre-treatment and advanced filtration technologies, are evaluated alongside policy and regulatory measures. The paper concludes by identifying key research gaps and advocating for a holistic One Health approach that integrates environmental monitoring, technological innovation, and global cooperation to effectively curb the environmental spread of AMR from hospital sources.

INTRODUCTION

The growing global crisis of antimicrobial resistance (AMR) presents a serious threat to modern healthcare systems. AMR arises when microorganisms evolve to resist the effects of antibiotics, making infections more difficult to treat and increasing the risk of disease spread, severe illness, and death [1]. While overuse and misuse of antibiotics in clinical and agricultural settings are major contributors,

environmental reservoirs play a critical but often underappreciated role in AMR propagation [2]. Among these, hospital wastewater has emerged as a significant source due to its high content of antimicrobial agents, disinfectants, and pathogenic organisms [3]. These waste streams create ideal conditions for the selection and amplification of resistant bacteria and their genetic determinants. Unlike municipal wastewater, hospital effluents often contain a concentrated mix of antibiotic residues and resistant microorganisms, increasing the likelihood of resistance gene exchange [4]. This paper aims to explore the complex role hospital wastewater plays in disseminating antimicrobial resistance genes (ARGs), review detection methods, examine the ecological and public health implications, and evaluate current mitigation strategies. Understanding the pathways and mechanisms of resistance spread from hospitals to the environment is crucial for developing effective interventions and safeguarding antibiotic efficacy.

2. COMPOSITION AND CHARACTERISTICS OF HOSPITAL WASTEWATER

Hospital wastewater is characterized by its complex and heterogeneous composition, which includes a high load of pharmaceuticals, including antibiotics, antiseptics, contrast agents, and various chemicals used in clinical settings [5]. In addition to chemical constituents, hospital effluent contains pathogenic microorganisms, antibiotic-resistant bacteria (ARB), and resistance genes shed from infected patients [6]. These components collectively create a selective environment conducive to the survival and proliferation of resistant microbes. Unlike domestic or industrial wastewater, hospital effluents may contain cytotoxic drugs from oncology departments, diagnostic agents, and disinfectants in concentrations significantly higher than in municipal wastewater [5]. The co-occurrence of antibiotics with pathogens increases the probability of selective pressure that favors resistant strains [7]. Furthermore, heavy metals and biocides, commonly found in cleaning and sterilizing products, may co-select for resistance genes, exacerbating the AMR issue. The nature of these wastewaters varies depending on the size and specialty of the hospital, its pharmaceutical usage, and patient turnover rates [8]. Without adequate pre-treatment, the direct discharge of such wastewater into sewage systems poses a high risk for ARG dissemination into broader aquatic ecosystems. This section lays the foundation for understanding how hospital wastewater functions as a reservoir and conduit for antimicrobial resistance in the environment [9].

3. MECHANISMS OF RESISTANCE GENE DISSEMINATION IN WASTEWATER

Hospital wastewater is a dynamic environment where horizontal gene transfer (HGT) plays a pivotal role in the spread of antimicrobial resistance genes (ARGs). The main mechanisms of HGT—conjugation, transformation, and transduction—facilitate the exchange of genetic material among bacteria, including between pathogenic and non-pathogenic species [10]. Mobile genetic elements (MGEs) such as plasmids, integrons, and transposons are instrumental in this process, acting as vectors

that carry multiple resistance genes. These elements enable bacteria to rapidly acquire and disseminate ARGs in response to selective pressure from residual antibiotics [11]. Additionally, the presence of biofilms—dense microbial communities embedded in a self-produced matrix—enhances gene transfer efficiency due to close proximity of cells and increased stability [12]. In such environments, resistant bacteria can thrive, multiply, and serve as reservoirs for further ARG propagation [13]. Furthermore, viruses known as bacteriophages can mediate gene transfer through transduction, expanding the scope of gene exchange even to distantly related bacteria [14]. These interactions significantly increase the genetic diversity of microbial communities and amplify resistance potential. Understanding these mechanisms is crucial for developing targeted strategies to interrupt ARG dissemination pathways in hospital wastewater systems [3].

4. DETECTION OF ANTIMICROBIAL RESISTANCE GENES IN HOSPITAL EFFLUENTS

The detection and monitoring of antimicrobial resistance genes (ARGs) in hospital effluents require advanced analytical techniques due to the complexity and variability of microbial and chemical constituents [15]. Traditional culture-based methods, while useful, are limited in scope and unable to detect non-culturable bacteria or unknown resistance genes. Molecular approaches such as quantitative polymerase chain reaction (qPCR) and real-time PCR have become the gold standard for targeted detection of known ARGs like bla, mcr, and van [16]. These methods provide high sensitivity and specificity but are limited by their dependence on prior knowledge of gene sequences. Metagenomic sequencing offers a broader, untargeted approach, enabling the comprehensive profiling of entire microbial communities and their resistomes [17]. Whole genome sequencing (WGS) is also employed to analyze individual isolates and uncover novel resistance determinants. High-throughput sequencing and bioinformatic tools allow for real-time surveillance and risk assessment [18]. However, challenges remain, including high costs, data complexity, and the need for standardized protocols. Case studies across various countries have reported the presence of critical resistance genes in hospital effluents, validating their role as hotspots for AMR spread. Routine surveillance using these technologies is vital to inform mitigation strategies and guide policy interventions [4].

5. ENVIRONMENTAL IMPACT AND PUBLIC HEALTH IMPLICATIONS

Hospital wastewater, when inadequately treated, enters municipal sewage systems or natural water bodies, contributing to the environmental dissemination of antimicrobial resistance genes (ARGs) [4]. These effluents carry both resistant pathogens and free-floating genetic material, which may persist in aquatic and terrestrial ecosystems. ARGs can be taken up by environmental bacteria, which act as secondary reservoirs, further propagating resistance through wildlife, agricultural practices, and even the human food chain [19]. In aquatic environments, resistance genes may accumulate in sediments or be assimilated by planktonic bacteria, promoting gene exchange across ecosystems. Humans may be

exposed to these resistant organisms through contaminated drinking water, recreational water use, and consumption of crops irrigated with untreated water [20]. The public health implications are profound: increased exposure to multidrug-resistant pathogens can lead to more frequent and severe infections, reduced efficacy of treatment options, and higher healthcare costs. Particularly vulnerable populations—such as immunocompromised individuals, hospital patients, and rural communities—face heightened risks [21]. Moreover, the spread of resistance across borders via water systems, animals, and humans poses a global challenge. Recognizing and addressing the environmental dimensions of AMR is essential to implementing effective, comprehensive health interventions [22].

6. CURRENT MITIGATION STRATEGIES

Controlling the spread of antimicrobial resistance genes (ARGs) through hospital wastewater requires the implementation of robust mitigation strategies. One effective approach involves the use of on-site pre-treatment systems within hospital facilities [23]. These systems, including membrane bioreactors, activated carbon filtration, and chemical disinfection (e.g., ozonation or chlorination), aim to reduce microbial loads and degrade pharmaceutical compounds before wastewater is released into the environment [24]. Advanced wastewater treatment technologies – such as ultraviolet (UV) irradiation, advanced oxidation processes (AOPs), and nanofiltration-offer enhanced removal of ARGs and antibiotic residues [25]. However, these technologies often come with high operational and maintenance costs, limiting their deployment in resource-constrained settings. Regulatory frameworks and environmental guidelines also play a critical role [26]. Some countries have introduced legislation mandating separate treatment for hospital effluents or limiting antibiotic discharge levels [27]. Furthermore, proper antibiotic stewardship programs within hospitals can reduce the amount of antimicrobial agents entering wastewater systems in the first place. Public awareness, staff training, and coordinated efforts between health, environmental, and wastewater authorities are essential for successful implementation. While progress is being made, widespread adoption of effective mitigation measures remains uneven globally, highlighting the need for collaborative and scalable solutions [28].

7. CHALLENGES AND RESEARCH GAPS

Despite growing awareness of the risks associated with antimicrobial resistance (AMR) in hospital wastewater, significant challenges hinder effective management and mitigation. One major issue is the lack of standardized monitoring protocols across different regions, which makes comparative assessments and coordinated responses difficult [29]. Moreover, many wastewater treatment facilities—particularly in developing countries—lack the technological capabilities and financial resources to handle hospital effluents adequately [30]. There is also limited understanding of the long-term fate and transport of resistance genes in various environmental matrices, such as soil and groundwater. Detection methods, while advancing, still struggle with data interpretation, especially in

complex metagenomic datasets [18]. Another challenge is the insufficient integration of health and environmental data, which prevents holistic risk assessments. Regulatory frameworks often lag behind scientific findings, and enforcement can be inconsistent or absent altogether [31]. Furthermore, public health policies rarely address the environmental dimensions of AMR, resulting in fragmented efforts. Research gaps include the need for real-time surveillance technologies, cost-effective treatment solutions, and predictive models to understand the evolution of resistance in natural ecosystems. Bridging these gaps is crucial for developing comprehensive, interdisciplinary strategies that tackle AMR at its environmental roots [32].

8. FUTURE PERSPECTIVES

The fight against antimicrobial resistance (AMR) linked to hospital wastewater requires a forwardlooking, interdisciplinary approach grounded in innovation and global cooperation [33]. Embracing the One Health paradigm-which recognizes the interconnectedness of human, animal, and environmental health—is vital to mitigating the environmental spread of resistance genes [34]. Future strategies must include the development of affordable, scalable wastewater treatment technologies suitable for diverse healthcare settings. Emerging methods, such as bioelectrochemical systems, microbial fuel cells, and engineered wetlands, show promise in degrading pharmaceutical compounds and ARGs sustainably [35]. Advances in molecular diagnostics, particularly portable and real-time genomic tools, can enhance environmental surveillance and outbreak response [36]. Additionally, datadriven approaches, including artificial intelligence and machine learning, may help predict ARG hotspots and assess intervention impacts. Policymakers must prioritize environmental AMR within global action plans and foster international collaborations to ensure knowledge sharing and resource mobilization [37]. Education and awareness campaigns targeting healthcare providers, environmental managers, and the public are also essential for promoting responsible antibiotic use and environmental stewardship [38]. Ultimately, integrating technological advancements, policy reform, nanotechnology and community engagement will be key to curbing the spread of resistance genes and safeguarding antibiotic efficacy for future generations [39][1][40].

9. CONCLUSION

Hospital wastewater represents a critical but often overlooked source of antimicrobial resistance genes (ARGs), contributing significantly to the global AMR crisis. The complex composition of these effluents, laden with antibiotic residues, resistant pathogens, and mobile genetic elements, fosters an ideal environment for horizontal gene transfer and ARG dissemination. Current detection methods—ranging from qPCR to metagenomics—have enhanced our understanding of resistance profiles, yet gaps remain in monitoring, standardization, and policy implementation. Inadequately treated hospital effluents can contaminate aquatic ecosystems, soil, and even food sources, posing a severe public health

threat. Advanced treatment technologies and antibiotic stewardship programs are making strides in containment, but widespread adoption and integration remain challenging. Addressing this issue demands a multifaceted approach that incorporates scientific innovation, cross-sector collaboration, and global policy coordination under a unified One Health framework. Protecting the environment from ARG pollution is essential not only for ecological sustainability but also for preserving the effectiveness of life-saving antibiotics. This paper underscores the urgent need for action, emphasizing that mitigating hospital wastewater's impact on AMR is a vital step in the broader battle against drugresistant infections.

Acknowledgement

Nill

Funding

No funding was received to carry out this study.

REFERENCES

- BAKER, S., PERIANOVA, O. V., PRUDNIKOVA, S. V., KUZMIN, A., POTKINA, N. K., KHOHLOVA, O. Y., & LOBOVA, T. I. (2020). PHYTOGENIC NANOPARTICLES TO COMBAT MULTI DRUG RESISTANT PATHOGENS AND PHOTOCATALYTIC DEGRADATION OF DYES. BIONANOSCIENCE, 10(2), 486-492.
- 2. MANJU, K., RAJ, S. N., RANJINI, H. K., NAYAKA, S. C., ASHWINI, P., SATISH, S., PRASAD, M. N. N., CHOUHAN, R. S., & BAKER, S. (2023). NANOVACCINES TO COMBAT DRUG RESISTANCE: THE NEXT-GENERATION IMMUNISATION. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES, 9(1). HTTPS://DOI.ORG/10.1186/S43094-023-00515-Y
- 3. SAMREEN, S., AHMAD, I., MALAK, H. A., & ABULREESH, H. H. (2021). ENVIRONMENTAL ANTIMICROBIAL RESISTANCE AND ITS DRIVERS: A POTENTIAL THREAT TO PUBLIC HEALTH [REVIEW OF ENVIRONMENTAL ANTIMICROBIAL RESISTANCE AND ITS DRIVERS: A POTENTIAL THREAT TO PUBLIC HEALTH]. JOURNAL OF GLOBAL ANTIMICROBIAL RESISTANCE, 27, 101. ELSEVIER BV. HTTPS://DOI.ORG/10.1016/J.JGAR.2021.08.001
- 4. ROSA, M. C. L., MAUGERI, A., FAVARA, G., MASTRA, C. L., LIO, R. M. S., BARCHITTA, M., & AGODI, A. (2025). THE IMPACT OF WASTEWATER ON ANTIMICROBIAL RESISTANCE: A SCOPING REVIEW OF TRANSMISSION PATHWAYS AND CONTRIBUTING FACTORS [REVIEW OF THE IMPACT OF

- WASTEWATER ON ANTIMICROBIAL RESISTANCE: A SCOPING REVIEW OF TRANSMISSION PATHWAYS AND CONTRIBUTING FACTORS]. ANTIBIOTICS, 14(2), 131. MULTIDISCIPLINARY DIGITAL PUBLISHING INSTITUTE. HTTPS://DOI.ORG/10.3390/ANTIBIOTICS14020131
- 5. KANAMA, K. M., DASO, A. P., MPENYANA-MONYATSI, L., & COETZEE, M. A. A. (2018). ASSESSMENT OF PHARMACEUTICALS, PERSONAL CARE PRODUCTS, AND HORMONES IN WASTEWATER TREATMENT PLANTS RECEIVING INFLOWS FROM HEALTH FACILITIES IN NORTH WEST PROVINCE, SOUTH AFRICA. JOURNAL OF TOXICOLOGY, 2018, 1. HTTPS://DOI.ORG/10.1155/2018/3751930
- 6. GAUTAM, A. K., KUMAR, S., & SABUMON, P. C. (2006). PRELIMINARY STUDY OF PHYSICO-CHEMICAL TREATMENT OPTIONS FOR HOSPITAL WASTEWATER.

 JOURNAL OF ENVIRONMENTAL MANAGEMENT, 83(3), 298.

 HTTPS://DOI.ORG/10.1016/J.JENVMAN.2006.03.009
- 7. KANAMA, K. M., DASO, A. P., MPENYANA-MONYATSI, L., & COETZEE, M. A. A. (2018). ASSESSMENT OF PHARMACEUTICALS, PERSONAL CARE PRODUCTS, AND HORMONES IN WASTEWATER TREATMENT PLANTS RECEIVING INFLOWS FROM HEALTH FACILITIES IN NORTH WEST PROVINCE, SOUTH AFRICA. JOURNAL OF TOXICOLOGY, 2018, 1. HTTPS://DOI.ORG/10.1155/2018/3751930
- 8. BAKER, S., & PERIANOVA, O. V. (2019). BIO-NANOBACTERICIDES: AN EMANATING CLASS OF NANOPARTICLES TOWARDS COMBATING MULTI-DRUG RESISTANT PATHOGENS. SN APPLIED SCIENCES, 1(7), 699.
- 9. SHAHNAWAZ, MOHD., & MALIK, A. (2018). PREVALENCE OF ANTIBIOTIC AND HEAVY METALS RESISTANCE IN COLIFORMS ISOLATED FROM HOSPITAL WASTEWATER. JOURNAL OF PURE AND APPLIED MICROBIOLOGY, 12(2), 1011. HTTPS://DOI.ORG/10.22207/JPAM.12.2.65
- 10. KAUR, R., YADAV, B., & TYAGI, R. D. (2020). MICROBIOLOGY OF HOSPITAL WASTEWATER. IN ELSEVIER EBOOKS (P. 103). ELSEVIER BV. HTTPS://DOI.ORG/10.1016/B978-0-12-819722-6.00004-3
- 11. MCGRATH, C. (2023). BREAKING GENETIC BARRIERS: UNDERSTANDING THE LIMITS OF HORIZONTAL GENE TRANSFER. GENOME BIOLOGY AND EVOLUTION, 15(6). HTTPS://DOI.ORG/10.1093/GBE/EVAD102
- 12. PARTRIDGE, S. R., KWONG, S. M., FIRTH, N., & JENSEN, S. O. (2018). MOBILE

- GENETIC ELEMENTS ASSOCIATED WITH ANTIMICROBIAL RESISTANCE [REVIEW OF MOBILE GENETIC ELEMENTS ASSOCIATED WITH ANTIMICROBIAL RESISTANCE]. CLINICAL MICROBIOLOGY REVIEWS, 31(4). AMERICAN SOCIETY FOR MICROBIOLOGY. HTTPS://DOI.ORG/10.1128/CMR.00088-17
- 13. ZUBERI, A., AHMAD, N., AHMAD, H., SAEED, M., & AHMAD, I. (2024). BEYOND ANTIBIOTICS: CRISPR/CAS9 TRIUMPH OVER BIOFILM-ASSOCIATED ANTIBIOTIC RESISTANCE INFECTIONS [REVIEW OF BEYOND ANTIBIOTICS: CRISPR/CAS9 TRIUMPH OVER BIOFILM-ASSOCIATED ANTIBIOTIC RESISTANCE INFECTIONS]. FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 14. FRONTIERS MEDIA. HTTPS://DOI.ORG/10.3389/FCIMB.2024.1408569
- 14. SYED, B., PRASAD, M. N., KUMAR, K. M., & SATISH, S. (2018). BIOCONJUGATED NANO-BACTERICIDAL COMPLEX FOR POTENT ACTIVITY AGAINST HUMAN AND PHYTOPATHOGENS WITH CONCERN OF GLOBAL DRUG RESISTANT CRISIS. SCIENCE OF THE TOTAL ENVIRONMENT, 637, 274-281.
- 15. GUO, Y. (2021). REMOVAL ABILITY OF ANTIBIOTIC RESISTANT BACTERIA (ARB) AND ANTIBIOTIC RESISTANCE GENES (ARGS) BY MEMBRANE FILTRATION PROCESS. IOP CONFERENCE SERIES EARTH AND ENVIRONMENTAL SCIENCE, 801(1), 12004. HTTPS://DOI.ORG/10.1088/1755-1315/801/1/012004
- 16. SAMREEN, S., AHMAD, I., MALAK, H. A., & ABULREESH, H. H. (2021). ENVIRONMENTAL ANTIMICROBIAL RESISTANCE AND ITS DRIVERS: A POTENTIAL THREAT TO PUBLIC HEALTH [REVIEW OF ENVIRONMENTAL ANTIMICROBIAL RESISTANCE AND ITS DRIVERS: A POTENTIAL THREAT TO PUBLIC HEALTH]. JOURNAL OF GLOBAL ANTIMICROBIAL RESISTANCE, 27, 101. ELSEVIER BV. HTTPS://DOI.ORG/10.1016/J.JGAR.2021.08.001
- 17. TIWARI, B., DROGUI, P., & TYAGI, R. D. (2020). MULTIDRUG-RESISTANT GENES AND PATHOGENIC BACTERIA IN HOSPITAL WASTEWATER. IN ELSEVIER EBOOKS (P. 177). ELSEVIER BV. HTTPS://DOI.ORG/10.1016/B978-0-12-819722-6.00006-7
- 18. ROCA, I., AKOVA, M., BAQUERO, F., CARLET, J., CAVALERI, M., COENEN, S., COHEN, J., FINDLAY, D. M., GYSSENS, I. C., HEURE, O. E., KAHLMETER, G., KRUSE, H., LAXMINARAYAN, R., LIÉBANA, E., LÓPEZ-CERERO, L., MACGOWAN, A., MARTINS, M., RODRÍGUEZ-BAÑO, J., ROLAIN, J., ... VILÀ, J.

- (2015). THE GLOBAL THREAT OF ANTIMICROBIAL RESISTANCE: SCIENCE FOR INTERVENTION [REVIEW OF THE GLOBAL THREAT OF ANTIMICROBIAL RESISTANCE: SCIENCE FOR INTERVENTION]. NEW MICROBES AND NEW INFECTIONS, 6, 22. ELSEVIER BV. HTTPS://DOI.ORG/10.1016/J.NMNI.2015.02.007
- 19. LEGGETT, R. M., ALCON-GINER, C., HEAVENS, D., CAIM, S., BROOK, T. C., KUJAWSKA, M., MARTIN, S., PEEL, N., ACFORD-PALMER, H., HOYLES, L., CLARKE, P., HALL, L. J., & CLARK, M. D. (2019). RAPID MINION PROFILING OF PRETERM MICROBIOTA AND ANTIMICROBIAL-RESISTANT PATHOGENS. NATURE MICROBIOLOGY, 5(3), 430. HTTPS://DOI.ORG/10.1038/S41564-019-0626-Z
- 20. GUITOR, A. K., RAPHENYA, A. R., KLUNK, J., KUCH, M., ALCOCK, B., SURETTE, M. G., MCARTHUR, A. G., POINAR, H. N., & WRIGHT, G. D. (2019). CAPTURING THE RESISTOME: A TARGETED CAPTURE METHOD TO REVEAL ANTIBIOTIC RESISTANCE DETERMINANTS IN METAGENOMES. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 64(1). HTTPS://DOI.ORG/10.1128/AAC.01324-19
- 21. ROSA, M. C. L., MAUGERI, A., FAVARA, G., MASTRA, C. L., LIO, R. M. S., BARCHITTA, M., & AGODI, A. (2025). THE IMPACT OF WASTEWATER ON ANTIMICROBIAL RESISTANCE: A SCOPING REVIEW OF TRANSMISSION PATHWAYS AND CONTRIBUTING FACTORS [REVIEW OF THE IMPACT OF WASTEWATER ON ANTIMICROBIAL RESISTANCE: A SCOPING REVIEW OF TRANSMISSION PATHWAYS AND CONTRIBUTING FACTORS]. ANTIBIOTICS, 14(2), 131. MULTIDISCIPLINARY DIGITAL PUBLISHING INSTITUTE. HTTPS://DOI.ORG/10.3390/ANTIBIOTICS14020131
- 22. ROSA, M. C. L., MAUGERI, A., FAVARA, G., MASTRA, C. L., LIO, R. M. S., BARCHITTA, M., & AGODI, A. (2025). THE IMPACT OF WASTEWATER ON ANTIMICROBIAL RESISTANCE: A SCOPING REVIEW OF TRANSMISSION PATHWAYS AND CONTRIBUTING FACTORS [REVIEW OF THE IMPACT OF WASTEWATER ON ANTIMICROBIAL RESISTANCE: A SCOPING REVIEW OF TRANSMISSION PATHWAYS AND CONTRIBUTING FACTORS]. ANTIBIOTICS, 14(2), 131. MULTIDISCIPLINARY DIGITAL PUBLISHING INSTITUTE. HTTPS://DOI.ORG/10.3390/ANTIBIOTICS14020131
- 23. SHAYISTA, H., PRASAD, M. N. N., RAJ, S. N., PRASAD, A., LAKSHMI, S., RANJINI, H. K., MANJU, K., RAVIKUMARA, CHOUHAN, R. S., KHOHLOVA, O. Y., ПЕРЬЯНОВА, О. В., & BAKER, S. (2024). COMPLEXITY OF ANTIBIOTIC RESISTANCE AND ITS IMPACT ON GUT MICROBIOTA DYNAMICS.

- ENGINEERING MICROBIOLOGY, 100187. HTTPS://DOI.ORG/10.1016/J.ENGMIC.2024.100187
- 24. NNADOZIE, C. F., & ODUME, O. N. (2019). FRESHWATER ENVIRONMENTS AS RESERVOIRS OF ANTIBIOTIC RESISTANT BACTERIA AND THEIR ROLE IN THE DISSEMINATION OF ANTIBIOTIC RESISTANCE GENES [REVIEW OF FRESHWATER ENVIRONMENTS AS RESERVOIRS OF ANTIBIOTIC RESISTANT BACTERIA AND THEIR ROLE IN THE DISSEMINATION OF ANTIBIOTIC RESISTANCE GENES]. ENVIRONMENTAL POLLUTION, 254, 113067. ELSEVIER BV. HTTPS://DOI.ORG/10.1016/J.ENVPOL.2019.113067
- 25. RILEY, M. M.-S. (2019). THE RISING PROBLEM OF MULTIDRUG-RESISTANT ORGANISMS IN INTENSIVE CARE UNITS. CRITICAL CARE NURSE, 39(4), 48. HTTPS://DOI.ORG/10.4037/CCN2019773
- 26. ZEBALLOS-GROSS, D., ROJAS-SERENO, Z. E., SALGADO-CAXITO, M., POETA, P., TORRES, C., & BENAVIDES, J. A. (2021). THE ROLE OF GULLS AS RESERVOIRS OF ANTIBIOTIC RESISTANCE IN AQUATIC ENVIRONMENTS: A SCOPING REVIEW [REVIEW OF THE ROLE OF GULLS AS RESERVOIRS OF ANTIBIOTIC RESISTANCE IN AQUATIC ENVIRONMENTS: A SCOPING REVIEW]. FRONTIERS IN MICROBIOLOGY, 12. FRONTIERS MEDIA. HTTPS://DOI.ORG/10.3389/FMICB.2021.703886
- 27. ZEBALLOS-GROSS, D., ROJAS-SERENO, Z. E., SALGADO-CAXITO, M., POETA, P., TORRES, C., & BENAVIDES, J. A. (2021). THE ROLE OF GULLS AS RESERVOIRS OF ANTIBIOTIC RESISTANCE IN AQUATIC ENVIRONMENTS: A SCOPING REVIEW [REVIEW OF THE ROLE OF GULLS AS RESERVOIRS OF ANTIBIOTIC RESISTANCE IN AQUATIC ENVIRONMENTS: A SCOPING REVIEW]. FRONTIERS IN MICROBIOLOGY, 12. FRONTIERS MEDIA. HTTPS://DOI.ORG/10.3389/FMICB.2021.703886
- 28. BEIER, S., CRAMER, C. O., KÖSTER, S., MAUER, C., PALMOWSKI, L., SCHRÖDER, H., & PINNEKAMP, J. (2010). FULL SCALE MEMBRANE BIOREACTOR TREATMENT OF HOSPITAL WASTEWATER AS FORERUNNER FOR HOT-SPOT WASTEWATER TREATMENT SOLUTIONS IN HIGH DENSITY URBAN AREAS. WATER SCIENCE & TECHNOLOGY, 63(1), 66. HTTPS://DOI.ORG/10.2166/WST.2011.010
- 29. PEI, M., ZHANG, B., HE, Y., SU, J., GIN, K. Y., LEV, O., SHEN, G., & HU, S. (2019). STATE OF THE ART OF TERTIARY TREATMENT TECHNOLOGIES FOR

- CONTROLLING ANTIBIOTIC RESISTANCE IN WASTEWATER TREATMENT PLANTS [REVIEW OF STATE OF THE ART OF TERTIARY TREATMENT TECHNOLOGIES FOR CONTROLLING ANTIBIOTIC RESISTANCE IN WASTEWATER TREATMENT PLANTS]. ENVIRONMENT INTERNATIONAL, 131, 105026. ELSEVIER BV. HTTPS://DOI.ORG/10.1016/J.ENVINT.2019.105026
- 30. SACHIN, S., PRAMANIK, B. K., SINGH, N., ZIZHOU, R., HOUSHYAR, S., COLE, I., & YIN, H. (2023). FAST AND EFFECTIVE REMOVAL OF CONGO RED BY DOPED ZNO NANOPARTICLES. NANOMATERIALS, 13(3), 566. HTTPS://DOI.ORG/10.3390/NANO13030566
- 31. DESAI, M., NJOKU, A., & NIMO-SEFAH, L. (2022). COMPARING ENVIRONMENTAL POLICIES TO REDUCE PHARMACEUTICAL POLLUTION AND ADDRESS DISPARITIES. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 19(14), 8292. HTTPS://DOI.ORG/10.3390/IJERPH19148292
- 32. SANTOS, A. S. P., PACHAWO, V., MELO, M. C. DE, & VIEIRA, J. M. P. (2021).

 PROGRESS ON LEGAL AND PRACTICAL ASPECTS ON WATER REUSE WITH

 EMPHASIS ON DRINKING WATER AN OVERVIEW. WATER SCIENCE &

 TECHNOLOGY WATER SUPPLY, 22(3), 3000.

 HTTPS://DOI.ORG/10.2166/WS.2021.412
- 33. KHAN, N. A., KHAN, S. U., AHMED, S., FAROOQI, I. H., HUSSAIN, A., VAMBOL, S., & VAMBOL, V. (2019). SMART WAYS OF HOSPITAL WASTEWATER MANAGEMENT, REGULATORY STANDARDS AND CONVENTIONAL TREATMENT TECHNIQUES. SMART AND SUSTAINABLE BUILT ENVIRONMENT, 9(4), 727. HTTPS://DOI.ORG/10.1108/SASBE-06-2019-0079
- 34. KUMARI, A., MAURYA, N. S., & TIWARI, B. (2020). HOSPITAL WASTEWATER TREATMENT SCENARIO AROUND THE GLOBE. IN ELSEVIER EBOOKS (P. 549). ELSEVIER BV. HTTPS://DOI.ORG/10.1016/B978-0-12-819722-6.00015-8
- 35. GUITOR, A. K., RAPHENYA, A. R., KLUNK, J., KUCH, M., ALCOCK, B., SURETTE, M. G., MCARTHUR, A. G., POINAR, H. N., & WRIGHT, G. D. (2019). CAPTURING THE RESISTOME: A TARGETED CAPTURE METHOD TO REVEAL ANTIBIOTIC RESISTANCE DETERMINANTS IN METAGENOMES. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 64(1). HTTPS://DOI.ORG/10.1128/AAC.01324-19
- 36. BENNEKOU, S. H. (2019). MOVING TOWARDS A HOLISTIC APPROACH FOR HUMAN HEALTH RISK ASSESSMENT IS THE CURRENT APPROACH FIT FOR

- PURPOSE? EFSA JOURNAL, 17. HTTPS://DOI.ORG/10.2903/J.EFSA.2019.E170711
- 37. LARSSON, D. G. J., FLACH, C., & LAXMINARAYAN, R. (2022). SEWAGE SURVEILLANCE OF ANTIBIOTIC RESISTANCE HOLDS BOTH OPPORTUNITIES AND CHALLENGES [REVIEW OF SEWAGE SURVEILLANCE OF ANTIBIOTIC RESISTANCE HOLDS BOTH OPPORTUNITIES AND CHALLENGES]. NATURE REVIEWS MICROBIOLOGY, 21(4), 213. NATURE PORTFOLIO. HTTPS://DOI.ORG/10.1038/S41579-022-00835-5
- 38. OLIVEIRA, M., ANTUNES, W., MOTA, S., MADUREIRA-CARVALHO, Á., DINIS-OLIVEIRA, R. J., & SILVA, D. D. DA. (2024). AN OVERVIEW OF THE RECENT ADVANCES IN ANTIMICROBIAL RESISTANCE [REVIEW OF AN OVERVIEW OF THE RECENT ADVANCES IN ANTIMICROBIAL RESISTANCE]. MICROORGANISMS, 12(9), 1920. MULTIDISCIPLINARY DIGITAL PUBLISHING INSTITUTE. HTTPS://DOI.ORG/10.3390/MICROORGANISMS12091920
- 39. MCEWEN, S. A., & COLLIGNON, P. (2018). ANTIMICROBIAL RESISTANCE: A ONE HEALTH PERSPECTIVE [REVIEW OF ANTIMICROBIAL RESISTANCE: A ONE HEALTH PERSPECTIVE]. MICROBIOLOGY SPECTRUM, 6(2). AMERICAN SOCIETY FOR MICROBIOLOGY. HTTPS://DOI.ORG/10.1128/MICROBIOLSPEC.ARBA-0009-2017
- 40. JAIN, K., JOHNSON, J., DEVPURA, N., RATHOUR, R., DESAI, C., TIWARI, O. N., & MADAMWAR, D. (2020). EMERGING BIOREMEDIATION TECHNOLOGIES FOR THE TREATMENT OF WASTEWATER CONTAINING SYNTHETIC ORGANIC COMPOUNDS. IN ELSEVIER EBOOKS (P. 131). ELSEVIER BV. HTTPS://DOI.ORG/10.1016/B978-0-12-819860-5.00005-5
- 41. KARISHMA, S., YAASHIKAA, P. R., KUMAR, P. S., KAMALESH, R., SARAVANAN, A., & RANGASAMY, G. (2023). PROMISING APPROACHES AND KINETIC PROSPECTS OF THE MICROBIAL DEGRADATION OF PHARMACEUTICAL CONTAMINANTS. ENVIRONMENTAL SCIENCE ADVANCES, 2(11), 1488. HTTPS://DOI.ORG/10.1039/D3VA00194F
- 42. NGUYÊN, Q. A., VU, H. P., NGUYEN, L. N., WANG, Q., DJORDJEVIC, S. P., DONNER, E., YIN, H., & NGHIEM, L. D. (2021). MONITORING ANTIBIOTIC RESISTANCE GENES IN WASTEWATER TREATMENT: CURRENT STRATEGIES AND FUTURE CHALLENGES [REVIEW OF MONITORING ANTIBIOTIC RESISTANCE GENES IN WASTEWATER TREATMENT: CURRENT STRATEGIES AND FUTURE CHALLENGES]. THE SCIENCE OF THE TOTAL ENVIRONMENT,

- 783, 146964. ELSEVIER BV. HTTPS://DOI.ORG/10.1016/J.SCITOTENV.2021.146964
- 43. DAHAL, R. H., & CHAUDHARY, D. K. (2018). MICROBIAL INFECTIONS AND ANTIMICROBIAL RESISTANCE IN NEPAL: CURRENT TRENDS AND RECOMMENDATIONS [REVIEW OF MICROBIAL INFECTIONS AND ANTIMICROBIAL RESISTANCE IN NEPAL: CURRENT TRENDS AND RECOMMENDATIONS]. THE OPEN MICROBIOLOGY JOURNAL, 12(1), 230. BENTHAM SCIENCE PUBLISHERS. HTTPS://DOI.ORG/10.2174/1874285801812010230
- 44. ADEBISI, Y. A. (2023). BALANCING THE RISKS AND BENEFITS OF ANTIBIOTIC
 USE IN A GLOBALIZED WORLD: THE ETHICS OF ANTIMICROBIAL
 RESISTANCE. GLOBALIZATION AND HEALTH, 19(1).
 HTTPS://DOI.ORG/10.1186/S12992-023-00930-Z
- 45. BAKER, S., PERIANOVA, O. V., PRUDNIKOVA, S. V., KUZMIN, A., POTKINA, N. K., KHOHLOVA, O. Y., & LOBOVA, T. I. (2020). PHYTOGENIC NANOPARTICLES TO COMBAT MULTI DRUG RESISTANT PATHOGENS AND PHOTOCATALYTIC DEGRADATION OF DYES. BIONANOSCIENCE, 10(2), 486-492.
- 46. SYED, B., PRUDNIKOVA, S. V., PERIANOVA, O. V., ZHARKOV, S. M., KUZMIN, A., CHOUHAN, R. S., ... & SINGH, M. (2019). PHYTOGENIC SYNTHESIS OF AG BIONANO-ANTIBIOTICS AGAINST ESKAPE DRUG RESISTANT COMMUNITIES IN KRASNOYARSK, SIBERIA. JOURNAL OF CLUSTER SCIENCE, 30, 589-597.