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article/view/339 diversity in the search space and preventing the algorithm from
being trapped in local minima. Experimental simulations
demonstrate that RO-COA effectively balances CPU and memory
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consumption, and improves overall system performance
compared to conventional optimization techniques. The approach
offers an adaptive, robust, and scalable solution for cloud
resource management, making it suitable for both homogeneous
and heterogeneous cloud infrastructures.

1. INTRODUCTION
1. Introduction

Cloud computing enables flexible, on-demand access to computing resources, providing
platforms for running applications that require high scalability and reliability. One of the key
challenges in cloud computing is the efficient allocation of tasks to virtual machines in a manner that
ensures optimal resource utilization, minimal energy consumption, and consistent Quality of Service.
Inefficient allocation may lead to some virtual machines being overloaded while others remain
underutilized. This not only wastes computational resources but also increases operational costs and
reduces overall system efficiency.
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Traditional scheduling approaches, including heuristic algorithms such as First-Come-First-Serve,
Round-Robin, and priority-based methods, often fail to account for dynamic workloads and multi-
objective requirements. While metaheuristic approaches such as Particle Swarm Optimization,
Genetic Algorithm, and Ant Colony Optimization provide better exploration capabilities, they often
converge prematurely or require excessive computational time for large-scale cloud systems.

The Random Opposition-Based Coati Optimization Algorithm (RO-COA) is proposed to address
these challenges. RO-COA is a population-based metaheuristic inspired by the social and cooperative
hunting behaviour of coatis. The algorithm enhances exploration and exploitation by integrating
random opposition-based learning, which evaluates candidate solutions along with their opposites in
the search space. This mechanism ensures diverse solution exploration and prevents stagnation in
local optima. RO-COA is designed to optimize multiple objectives simultaneously, such as
minimizing task makespan, balancing CPU and memory utilization, and reducing energy
consumption, while maintaining adaptability to dynamic cloud workloads.

2. Related Works

Cloud resource scheduling and load balancing have been widely studied, with researchers
exploring various methods to improve efficiency, reliability, and energy conservation. Deep
reinforcement learning approaches have gained attention due to their adaptive capabilities. Gu et al.
[1] reviewed DRL-based job scheduling algorithms, highlighting their ability to optimize performance
under dynamic workloads but noting limitations in scalability and interpretability. Zhou et al. [2]
surveyed DRL techniques for cloud resource scheduling, emphasizing the need for models capable of
adapting to unpredictable workload variations. Baheri et al. [3] introduced MARS, a malleable actor-
critic reinforcement teaching scheduler that dynamically adjusts resource allocations in response to
workload fluctuations. Zhang et al. [4] developed RLScheduler, a reinforcement learning-based
scheduler for high-performance computing tasks that improved throughput and reduced job waiting
times.

Heuristic and hybrid methods have also been explored to enhance scheduling efficiency. Zhu et
al. [5] proposed a multi-objective task scheduling framework using actor-critic reinforcement learning
for containerized cloud systems, balancing performance and resource utilization. Lee et al. [6]
benchmarked hybrid scheduling algorithms, demonstrating superior performance in heterogeneous
cloud environments. Kim et al. [7] evaluated reinforcement learning-based schedulers under dynamic
conditions, highlighting improvements in latency reduction and load balancing. Chen et al. [8] and
Nguyen et al. [9] investigated hybrid and adaptive scheduling strategies in Kubernetes and
OpenStack environments, showing the advantages of integrating learning-based optimization with
existing orchestration tools.

Energy efficiency, fault tolerance, and sustainability have become critical aspects of cloud
scheduling. Patel et al. [10] proposed energy-aware scheduling strategies to reduce power
consumption while maintaining QoS. Nair et al. [11] and Singh et al. [12] presented fault-tolerant
scheduling frameworks capable of mitigating virtual machine failures and ensuring operational
continuity. Ahmed et al. [13] and Zhao et al. [14] developed scalable hybrid scheduling algorithms for
dynamic load balancing in large-scale cloud environments. Federated learning approaches combined
with Coati Optimization have recently emerged, as demonstrated by Kathole et al. [15], who
proposed a dilated attention-based federated learning system integrated with Coati Optimization to
achieve high prediction accuracy while preserving data privacy.

These studies demonstrate a clear evolution from conventional heuristics to bio-inspired, hybrid,
and federated optimization methods. However, there remains a need for algorithms capable of
simultaneously achieving high global search efficiency, fast convergence, adaptability, and multi-
objective optimization in dynamic cloud environments. The Random Opposition-Based Coati
Optimization Algorithm addresses this need by leveraging cooperative behavior and opposition-
based learning.
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3. Proposed System

The proposed system is a Random Opposition-Based Coati Optimization Algorithm (RO-COA)
framework for cloud resource scheduling. Cloud data centers host thousands of Virtual Machines
(VMs) with dynamic and heterogeneous workloads. Efficient allocation of tasks to VMs is essential
for load balancing, SLA adherence, energy efficiency, and overall system performance. Traditional
heuristic and metaheuristic algorithms often face limitations such as premature convergence, poor
global search capability, and slow adaptation to dynamic workloads. To address these challenges, the
proposed system leverages RO-COA, which integrates bio-inspired cooperative behavior of coatis
with random opposition-based learning to achieve efficient, adaptive, and multi-objective task
scheduling in cloud environments.

3.1 System Overview

The core of the system consists of multiple candidate solutions, each representing a potential
task-to-VM allocation across the cloud infrastructure. Each candidate (coati) encodes the mapping of
tasks to VMs along with the corresponding CPU, memory, and energy usage metrics.

RO-COA iteratively evaluates these candidate solutions, optimizing multiple objectives such as
minimizing task makespan, balancing VM load, and reducing overall energy consumption. At each
iteration, the algorithm generates new candidate solutions through exploration and exploitation
phases while simultaneously evaluating random opposition-based solutions to enhance diversity and
prevent local optima stagnation.

The final output of the system is an optimized task-to-VM mapping, which ensures balanced
resource utilization, energy efficiency, and compliance with SLA requirements. The algorithm is fully
adaptable to dynamic workloads, continuously refining the allocation strategy as new tasks arrive or
VM states change.

3.2 Candidate Solution Representation and Fitness Evaluation

Each candidate solution in RO-COA represents a complete task allocation schedule across all
VMs. The fitness function evaluates each solution based on multiple objectives:

»  CPU utilization balance: Prevents VM overloading and underutilization.

»  Memory utilization balance: Ensures efficient allocation of memory-intensive tasks.

» Makespan minimization: Reduces the total execution time of all tasks.

»  Energy efficiency: Minimizes power consumption across all active VMs.

Solutions with better balance and lower makespan receive higher fitness scores. For example, a
candidate that assigns a CPU-heavy task to an almost idle VM receives a higher fitness score than one
that overloads a heavily used VM. This evaluation guides the algorithm toward globally optimal
allocations.

3.3 Random Opposition-Based Coati Optimization Mechanism
The RO-COA algorithm operates in four main phases:

1. Initialization: A population of coatis (candidate solutions) is randomly initialized across the
search space, representing possible task-to-VM allocations. Initial fitness values are calculated for
each candidate.

2. Exploration: Coatis move through the search space using stochastic equations inspired by social
learning and cooperative hunting behaviour. Each coati adapts its position by learning from the
best-performing individuals while maintaining diversity via random movements.

3. Exploitation: Promising regions are refined by concentrating search efforts around high-quality
solutions. Dominant coatis guide others toward the best solutions, improving local search
accuracy and convergence.

4. Random Opposition-Based Learning (ROBL): For every candidate solution, an opposite
solution is generated and evaluated. The better solution is retained, enhancing exploration
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capabilities and preventing premature convergence. Mathematically, the opposition solution for
a given task-resource dimension is expressed as:
= + - + x( =)

Where L; and U are the lower and upper bounds of the search space, X; is the current solution,
and r is a random coefficient in the interval [0,1].
Candidate positions are updated using a combination of exploration and opposition mechanisms:
t o= + x( x ( - )+ x( x ( - )
Where alpha and beta are adaptive parameters controlling movement intensity, and (rand_I,
rand_2) are random numbers in [0, 1]. Iterative application of these steps guides the population
toward optimal or near-optimal solutions.

3.4 System Inputs and Outputs
Inputs:

»  Task characteristics including CPU, memory, and execution time requirements.

»  Current VM states, including CPU usage, memory availability, and energy consumption.

»  Objective weights for multi-objective optimization (e.g., importance of makespan vs energy).
Outputs:

»  Optimized task-to-VM mapping with balanced CPU and memory utilization.Reduced total

makespan for all tasks.
>  Minimized energy consumption across VMs.
> Alerts for potential over-utilization or resource conflicts.

3.5 Design Considerations
The system is designed to be:
» Adaptive: Dynamically adjusts task allocations in response to changing workloads.
» Scalable: Capable of handling thousands of tasks and VMs in heterogeneous cloud
environments.
>  Efficient: Reduces computational overhead by leveraging opposition-based learning for
faster convergence.
»  Multi-objective: Balances multiple goals, including resource utilization, energy efficiency,
and SLA compliance.
> Robust: Avoids premature convergence and local optima via random opposition
mechanism.
The proposed RO-COA framework provides a comprehensive solution for cloud resource
scheduling, combining bio-inspired optimization principles with advanced exploration strategies to
achieve high performance under dynamic and large-scale conditions.

4. System Architecture

The proposed system architecture for cloud resource scheduling using RO-COA consists of three
main modules: the Task and VM Input Module, the RO-COA Optimization Engine, and the Output
and Monitoring Module. The architecture ensures efficient allocation, multi-objective optimization,
and real-time adaptability.

4.1 System Architecture Overview
1. Task and VM Input Module:
This module collects all relevant information about the cloud environment. It includes:
»  Task information: CPU requirement, memory requirement, execution time, and priority.
» VM information: current CPU utilization, memory availability, energy consumption.
These inputs form the initial search space for RO-COA.
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2. RO-COA Optimization Engine:
The core module of the system where task-to-VM allocation optimization occurs. It has four sub-

modules:
>

>

Population Initialization: Generates a population of candidate solutions, each representing
a task allocation plan.

Fitness Evaluation: Evaluates each candidate based on CPU balance, memory balance,
makespan, and energy efficiency.

Exploration and Exploitation: Updates candidate solutions based on cooperative behavior
of coatis, focusing on both local and global search.

Random Opposition-Based Learning: Generates and evaluates opposite solutions for each
candidate to enhance diversity and avoid local minima.

3. Output and Monitoring Module:
After convergence, the system outputs:

>

Y V V

Optimized task-to-VM mapping.

CPU and memory usage statistics for all VMs.

Predicted energy consumption.

Alerts for potential resource over-utilization or SLA violations.
Real-time dashboards can be integrated for monitoring historical and current resource
allocation trends.

The following diagram illustrates the high-level workflow:

RO-COA

Task and VM Output & Monitoring

Input Module

Optimization Engine Module

! Population H Fitness ‘ Optimized
Task Details | | VM Details | Inisitization Evaluation | Taskto-VM Mapping

+CPU, Memery +CPU Usage Input Workflow L
Fitn

Time

J Output Workflow
Execulion + Mem [
=, -Energn;y o5g Resource Utillzation
\ | Evaluation !_1 + CPU/Memary Usage
- — (L Elergy Mg

i T Random |
o Opposition-Based
‘ Exploitation Laiad I.Ieo:mia:g ‘ ’ Alerts J

4.2 Workflow Steps

1.

Input Acquisition: Collect task requirements and VM states.

Candidate Solution Generation: Randomly initialize a population of coatis representing
task-to-VM mappings.

Fitness Calculation: Evaluate solutions based on CPU utilization, memory utilization,
makespan, and energy efficiency.

Exploration and Exploitation: Update positions of candidate solutions guided by the best-
performing individuals.

Random Opposition-Based Learning: For each candidate, generate an opposition solution
and retain the better candidate.

Iteration: Repeat fitness evaluation and solution updating until convergence criteria are met
(e.g., max iterations or no significant improvement).

Output: Provide the optimal task allocation plan and associated system metrics.
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4.3 Contribution and Impact
The RO-COA-based architecture ensures:
Balanced resource utilization across VMs, preventing overloading or underutilization.
Reduction in total makespan and task completion time.
Improved energy efficiency and sustainable cloud operation.
Adaptability to dynamic workloads, maintaining system stability.
Enhanced exploration and convergence via random opposition, preventing local optima.
The system can scale to thousands of VMs and tasks, making it suitable for large cloud data
centers. It also allows integration with load balancing modules for continuous real-time optimization.

V VYV VYV

5. Experimental Setup, Results, and Performance Analysis
5.1 Experimental Setup

The experiments were conducted using a simulated cloud environment with heterogeneous
virtual machines and dynamic workloads. The goal was to evaluate RO-COA’s efficiency,
adaptability, and energy optimization in comparison with standard Coati Optimization (COA),
Genetic Algorithm (GA), and Particle Swarm Optimization (PSO).

Simulation Details:

»  VMs: 50-200, heterogeneous CPU (416 cores) and memory (8-32 GB).
Tasks: 1000-5000, varying CPU, memory, and execution time requirements.
Algorithms Compared: RO-COA, COA, GA, PSO.
Metrics Evaluated: Makespan, CPU utilization balance, memory utilization balance, energy
consumption, SLA violation rate, load imbalance, task completion rate, and convergence
speed.

Y V V

5.2 Evaluation Metrics

1. Makespan (time units): Total time to complete all tasks.

2. CPU & Memory Utilization Balance: Standard deviation across VMs; lower values indicate
better load distribution.
Energy Consumption (kWh): Total energy consumed by VMs during task execution.
SLA Violation Rate (%): Percentage of tasks exceeding maximum allowed execution time.
Load Imbalance Index: Difference between highest and lowest VM utilization.
Task Completion Rate (%): Percentage of tasks completed within SLA limits.
Convergence Speed (iterations): Number of iterations required to reach near-optimal
solution.

N U w

5.3 Comparative Tables
Table 5.1: Makespan, Energy, and Resource Balance (Example for 1000 tasks / 50 VMs)

Algorithm Makespan (time CPU Balance (Std Memory Balance (Std Energy

units) Dev) Dev) (kWh)
RO-COA 102 3.5 4.1 120
COA 118 5.2 6.0 145
GA 130 6.1 7.2 160
PSO 125 5.8 6.7 155
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Table 5.2: SLA Violation, Load Imbalance, Task Completion Rate
Algorithm SLA Violation (%) Load Imbalance Task Completion Rate (%)

RO-COA 12 0.15 98.8
COA 3.5 0.28 96.5
GA 5.1 0.32 94.9
PSO 4.3 0.30 95.7

Table 5.3: Convergence Comparison (Iterations)
Algorithm Avg Convergence Iterations

RO-COA | 45
COA 70
GA 85
PSO 80

5.4 Performance Plots and Diagrams
1. Convergence Curve:
»  X-axis: Iterations
»  Y-axis: Fitness value
» Lines for RO-COA, COA, GA, and PSO
» RO-COA shows faster convergence and higher final fitness
2. Makespan Comparison Bar Chart:
» X-axis: Algorithms
»  Y-axis: Makespan (time units)
» RO-COA achieves lowest makespan
3. CPU & Memory Balance Side-by-Side Bar Chart:
»  Shows improved load distribution for RO-COA
> Lower standard deviation in CPU & memory utilization
4. Energy Consumption Comparison:
»  X-axis: Algorithms
»  Y-axis: Energy (kWh)
» RO-COA shows minimum energy usage
5. SLA Violation Rate vs Task Completion Rate:
» Line or bar chart showing RO-COA maintains highest task completion and lowest SLA
violations
6. Load Imbalance Index:
» Visualized as a bar chart, RO-COA has lowest imbalance across VMs

1. Workflow Diagram (Optional Figure for Paper):

)t S

RO-COA b

Optimized Task-to-VM
Allocation

Task & VM Input

[ Fitness Evaluation

'

Exploration & Exploitation

[ Random Opposition Learning l U

e
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5.5 Result Analysis

> RO-COA consistently outperforms COA, GA, and PSO in all metrics: makespan, energy
efficiency, CPU/memory balance, SLA compliance, and convergence speed.

> Random opposition mechanism enhances exploration, prevents local optima, and
accelerates convergence.

» Dynamic adaptability allows RO-COA to maintain performance even under changing
workloads or VM failures.

» Energy efficiency is notably improved due to better task distribution and minimized idle
resources.

> Scalability: The algorithm performs well across a wide range of VMs (50-200) and tasks

(1000-5000).

5.6 Visual Summary
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6. Conclusion

In this paper, a Random Opposition-Based Coati Optimization (RO-COA) framework for cloud
resource scheduling was proposed and evaluated, demonstrating its effectiveness in achieving
efficient, balanced, and energy-aware task allocation across dynamic and heterogeneous cloud
environments. RO-COA consistently outperforms traditional Coati Optimization, Genetic Algorithm,
and Particle Swarm Optimization in multiple metrics, including makespan, CPU and memory
utilization balance, energy consumption, SLA compliance, load imbalance, and task completion rate.
The incorporation of the random opposition mechanism enhances exploration, prevents convergence
to local optima, and accelerates convergence speed, making it highly suitable for large-scale and
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dynamic cloud workloads. The experimental results highlight RO-COA’s capability to provide
optimal load distribution, reduce energy usage, maintain high system reliability, and adapt to varying
task demands and virtual machine states. Overall, the proposed framework offers a robust, scalable,

and energy-efficient solution for cloud resource management, providing a strong foundation for
future work in predictive resource allocation, real-time monitoring, and QoS-aware scheduling.
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