South Asian Journal of Science and Technology

P

y
0] Open Access Full Text Article 13(3)(2023) 16-26 DOI: 10.26524/sajet.2023.12

Infrastructure as Code for Secure and Scalable Network Deployments Using AWS
CloudFormation

Haritha Bhuvaneswari Illa
Amazon web services Inc, Texas, USA
illaharitha030@gmail.com

Article info Abstract
Received 8" January 2023 Received Modern organizations increasingly rely on cloud-based
in revised form 10 March 2023 infrastructures to meet the growing demands for scalability,
Accepted 27 August 2023 agility, and security in network deployments. Traditional network
configuration methods, characterized by manual provisioning
Keywords: and human intervention, often lead to inconsistencies, security
Infrastructure as Code, AWS vulnerabilities, and slower response times. Infrastructure as Code
CloudFormation, Network (IaC) has emerged as a transformative approach, enabling the

Automation, Security, Scalability, automated and consistent deployment of cloud infrastructure
Cloud Deployment, DevSecOps using declarative templates. This research focuses on employing

https://sajet.in/index.php/journal/ AWS CloudFormation, Amazon Web Services’ native IaC

article/view/343 framework, to design and implement secure and scalable network
architectures. The study investigates the role of IaC in achieving
automated provisioning, enforcing security compliance, and
ensuring elasticity within network environments. A comparative
evaluation between CloudFormation-based automated
deployments and traditional manual setups is conducted across
parameters such as deployment time, fault tolerance, security
compliance, and scalability efficiency. Experimental results
demonstrate that IaC-based deployments using CloudFormation
reduce provisioning time by up to 60%, minimize configuration
drift, and improve compliance adherence through policy-based
template definitions. Furthermore, the scalability features,
including Elastic Load Balancing and Auto Scaling configurations,
showcase a substantial enhancement in handling dynamic
workloads. The paper concludes that AWS CloudFormation
provides a robust, secure, and scalable framework for network
deployment and management. Its integration with AWS Identity
and Access Management (IAM), version control systems, and
monitoring tools enhances operational security and visibility. The
findings highlight IaC as a key enabler for modern DevSecOps-
driven network automation, paving the way for more resilient,
auditable, and cost-efficient infrastructure management.

16

https://sajet.in/index.php/journal/

Haritha Bhuvaneswari Illa (2023)

1. INTRODUCTION
1.1 Background

The rapid adoption of cloud computing has transformed the way organizations design, deploy,
and manage network infrastructures. As enterprises move toward digital transformation, the demand
for scalable, secure, and resilient infrastructure has become critical (Paladi & Gehrmann, 2017). Cloud
platforms such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP)
offer a wide range of services that allow dynamic provisioning of network resources on demand.
However, as infrastructure grows in complexity, manual configuration and management become
inefficient, error-prone, and difficult to maintain (Thiesse et al., 2009).

In this evolving landscape, Infrastructure as Code (IaC) has emerged as a revolutionary concept
that automates infrastructure provisioning and configuration through machine-readable code. IaC
treats infrastructure definitions such as networks, servers, and databases as source code files that can
be version-controlled, tested, and deployed consistently across environments. This paradigm shift
promotes repeatability, traceability, and scalability, thereby reducing human error and improving
operational efficiency (Venzke et al., 2006) (Thoelen et al., 2015).

Among the various IaC tools available, AWS CloudFormation stands out as one of the most robust
and natively integrated solutions for AWS environments. It allows users to define infrastructure
components using declarative templates written in YAML or JSON (Rong et al., 2021). These
templates describe every network and application component, enabling complete automation from
provisioning to configuration. By leveraging CloudFormation, organizations can deploy complex
network topologies with predefined security policies, routing configurations, and high availability
mechanisms in a matter of minutes (Rong et al., 2022).

1.2 Problem Context and Motivation

Traditional network deployment methods involve manual setup through management consoles or
command-line interfaces, which are time-consuming and inconsistent. Each configuration step
performed manually increases the likelihood of human error, configuration drift, and security
vulnerabilities. Additionally, as cloud environments scale to accommodate growing workloads,
maintaining consistency across multiple environments such as development, testing, and production
becomes a major operational challenge (Nyamweno et al., 2022).

Furthermore, ensuring security compliance in network deployments is a pressing concern.
Misconfigured firewalls, unrestricted access controls, or unencrypted communication channels often
lead to data breaches or compliance violations (Stabile et al., 2020). Manual enforcement of security
policies is inadequate for large-scale, distributed infrastructures. Thus, there is a compelling need for
automated, policy-driven infrastructure provisioning that embeds security and compliance at the
code level (Dugas et al., 2020).

This research is motivated by the need to empirically examine how IaC specifically AWS
CloudFormation can enhance the security, scalability, and manageability of network deployments.
The study aims to provide both a theoretical understanding and a practical demonstration of how
CloudFormation can address modern networking challenges (Chinamanagonda 2019).

1.3 Significance of Infrastructure as Code (IaC)

Infrastructure as Code extends the principles of software engineering such as modularity,
automation, and version control to infrastructure management. By using declarative definitions, IaC
ensures that infrastructure can be consistently replicated across multiple environments. This not only
accelerates deployment but also simplifies disaster recovery and rollback procedures (Mulpuri 2021).

From a DevOps and DevSecOps perspective, 1aC bridges the gap between development,
operations, and security teams. It allows infrastructure changes to pass through the same testing and
approval pipelines as application code, ensuring governance and compliance (Smit 2019). In the

17

Haritha Bhuvaneswari Illa (2023)

context of AWS CloudFormation, this capability enables teams to embed security-as-code practices
where identity, encryption, and access controls are automatically enforced during deployment
(Campbell 2020).

Moreover, 1aC provides a foundation for scalability and elasticity in cloud networks. By defining
load balancers, auto-scaling groups, and multi-AZ (availability zone) configurations within templates,
CloudFormation enables infrastructures to automatically adapt to workload fluctuations. This aligns
with cloud-native principles of resilience, availability, and cost-efficiency, essential for modern
enterprises (Wolter 2012).

1.4 Research Problem and Objectives

Despite widespread recognition of IaC’s potential, limited empirical research exists on its
quantitative impact in network deployment scenarios especially concerning AWS CloudFormation.
While prior studies have examined IaC for application infrastructure, fewer have focused on
network-layer automation that integrates routing, subnets, and security controls (Nashiruddin &
Nugraha, 2021) (Azpilicueta et al., 2016).
Therefore, this study aims to fill that gap by investigating how AWS CloudFormation enhances:

> Deployment efficiency: Reducing time and effort required for provisioning networks.

> Scalability: Enabling elastic resource management through automation.
> Security: Enforcing compliance and minimizing human error through predefined policies.
> Cost-effectiveness: Optimizing resource usage by automating lifecycle management
(Mujkanovic et al., 2020).
3.Methodology

This study adopts an experimental design to evaluate the security, scalability, and efficiency of
network deployments using AWS CloudFormation compared to traditional manual methods. The
methodology is structured across four primary components: infrastructure setup, security
configuration, scalability testing, and evaluation metrics.

3.1. Infrastructure Setup:

A Virtual Private Cloud (VPC) was created using CloudFormation templates defining public and
private subnets, route tables, Internet gateways, and NAT gateways. The configuration included
multiple availability zones to ensure high availability. The same architecture was also manually
deployed through the AWS Management Console for comparison.

Virtual Private Cloud (VPC)

AZ-1 Subnet
(Public Route Table) = ===
S === Web Server | =—] Web Server
< & > (EC2) (EC2)
Internet NAT Gateway
(lsw) \
Public Subnet ‘ Public Subnet
} — ;
Private)
g Web Server <> *| Route Table > Application | —— AZ-1 O
== (EC2) ‘ NAT Gateway &= (EC2) NAT Gateway
v
Application Database = Database Database
&

(EC2) (RDS) & (RDS) (RDS)

Private Subnet

Manual Deployment
(Console)

Private Subnet

Automated Deployment
(CloudFormation Template)

A three-tier AWS architecture

Haritha Bhuvaneswari Illa (2023)

3.2. Security Configuration:

Security policies were implemented through IAM roles, security groups, and Network Access
Control Lists (NACLs). Encryption at rest (via AWS KMS) and encryption in transit (via SSL/TLS)
were enforced. The Principle of Least Privilege (PoLP) was applied throughout. CloudFormation
Stack Policies were used to prevent unauthorized resource modification.

3.3. Scalability Testing:

To test elasticity, EC2 Auto Scaling Groups and Elastic Load Balancers were configured within the
templates. Stress tests were conducted using simulated workloads to evaluate how dynamically the
infrastructure adapted to load variations.

3.4. Evaluation Metrics:

The analysis focused on deployment time, resource utilization efficiency, fault tolerance, and
compliance adherence. AWS CloudWatch metrics and AWS Config compliance reports were used for
monitoring. Security compliance was validated against CIS AWS Foundations Benchmark guidelines.

3.5. Data Collection and Analysis:

Quantitative data were collected from AWS CloudWatch and Cost Explorer, while qualitative
observations were derived from configuration logs and error reports. Comparative analyses between
manual and CloudFormation-based deployments were performed to assess reproducibility, resilience,
and cost implications. The methodology ensures that the evaluation not only measures technical
performance but also demonstrates how IaC enhances governance, security, and operational agility in
cloud network environments.

4. Implementation and Case Study

The implementation phase involved deploying a secure and scalable network infrastructure using
AWS CloudFormation templates. The network design consisted of a three-tier architecture
presentation, application, and database layers distributed across multiple availability zones for
redundancy.

The CloudFormation template, written in YAML, defined resources such as a Virtual Private
Cloud (VPC), public and private subnets, route tables, Internet Gateways, NAT Gateways, EC2
instances, Elastic Load Balancers (ELB), and Auto Scaling Groups. Each resource was parameterized
to allow dynamic scaling and easy modification. Version control was maintained through AWS Code
Commit and GitHub integration, ensuring traceability and rollback capability.

A security-first approach was employed. IAM roles restricted access based on the principle of least
privilege, and security groups enforced strict ingress and egress rules. Network traffic between tiers
was filtered using Network ACLs. AWS KMS keys were used for encrypting data at rest in Amazon
RDS and S3. CloudTrail and AWS Config were enabled for audit tracking and compliance monitoring.

To simulate workload conditions, EC2 instances in the application tier were subjected to stress
testing using Apache JMeter. Auto Scaling policies responded dynamically to CPU utilization metrics,
demonstrating scalability. Comparative measurements were taken for provisioning time, fault
recovery, and throughput performance between manual and IaC-based deployments.

Results revealed a 65% reduction in deployment time and a 45% improvement in scalability
performance using CloudFormation. The stack-based management approach also minimized human
error and configuration drift. Rollback mechanisms allowed for automatic reversion to stable
configurations in case of failure. This case study validates the hypothesis that IaC, when implemented
with CloudFormation, provides a repeatable, secure, and efficient framework for cloud network
deployment, aligning with best practices of the AWS Well-Architected Framework.

19

Haritha Bhuvaneswari Illa (2023)

Public Subnet

Intrastructure as Automated o Application
Code (laC) Provisioning °{ Load Batancer’ @ Do

& Deployment
NAT Gateway
|

eSS —

{ine

[
Private Subnet (Application Tier)

Security 1
_@ Groups !

EC2 Auto Scahng Group

CloudFormation
Stack

Aceess Connel Layesss

I
Private Subnet (Database Tier)
[f |interna
L -—ISecure L
Connection

' Amazon RDS
************** (Multi-AZ) ===t

Connetivity Gones

Security,
Monitoring &
Logging

|

28 =)

CloudWatch

5

CloudTrail

A three-tier AWS architecture deployed via CloudFormation

5. Results

The evaluation compared network deployments carried out manually through the AWS
Management Console against those provisioned using AWS CloudFormation templates. Results were
tolerance, security

analyzed across five dimensions deployment efficiency, scalability, fault
compliance, and cost optimization.

5.1 Deployment Efficiency

Automated provisioning with CloudFormation significantly reduced the deployment time of the

complete three-tier architecture from 48 minutes (manual) to 17 minutes

improvement (=65%) stemmed from parallel resource instantiation and the elimination of human

configuration errors.

50
48

40
m
3
2
'\g 30
()
E
= 20
c
[
£
<) 17
. 10
[
o

0

Manual Automated w/
Deployment CloudFormation

Deployment Time Comparison

20

(automated).

Haritha Bhuvaneswari Illa (2023)

5.2 Scalability and Elasticity

During simulated stress testing using Apache JMeter, the CloudFormation-based infrastructure
demonstrated dynamic scaling within 60 seconds of threshold breach, maintaining service availability
above 99.95%. In contrast, the manually configured setup required manual instance addition,
resulting in temporary service latency.

) . After Scaling (IaC- o
Metric Before Scaling based) Improvement (%)
Average CPU
Utilization (%) 85 68 200 1
Instance Launch
Latency (seconds) 180 60 667 |
Average Request
Throughput 3200 4800 50.0 1
(req/sec)
Response Time |, 110 542 |
(ms)
Service
Availability (%) 987 9995 N
Throughput vs. Concurrent Users
40
EC? —— laC-based System
S 35 ‘ — Manual Setup
%
5 30
Q
&
2 25
3
o
2 2
2
£ 15
)]
=
g
c 10
=
5

100 200 300 400 500 600 700 800 1000

Concurrent Users

Auto Scaling Performance Metrics

5.3 Fault Tolerance and Recovery

CloudFormation stacks enhanced system resilience through automatic rollback during deployment
failures. Recovery time from simulated instance termination was 30 seconds faster than in the manual
setup, attributed to predefined Auto Scaling Group health checks.

21

Haritha Bhuvaneswari Illa (2023)

200
CloudFormation
150s (laC-based)
Tg 150
(=
I}
(9}
@ 120s
> 100
o}
>
ol
O
2
o 50
(]
=
=
c 10|
©
(]
=
0
Manual Setup CloudFormation
(laC-based)

Deployment Method

Comparison of Mean Time to Recovery

5.4 Security and Compliance Validation

Security assessments using AWS Config and CIS AWS Foundations Benchmark revealed 100%
compliance for encryption policies, IAM least-privilege enforcement, and logging configurations in
CloudFormation stacks. The manual setup achieved 78% compliance, primarily failing on IAM policy
consistency.

Security Compliance Scores (Manual vs. [aC)
10 1

I Manual Configuration
100\% 100\% 3 i
100 4 BN CloudFormation (laC-based)

Compliance (%)

i roent ornd
e oo 5gane® " ewnor >
i1\

ARy ance
cur) c,oﬂ‘?“an
e

Security Compliance Scores (Manual vs IaC)

22

Haritha Bhuvaneswari Illa (2023)

5.5 Cost and Operational Insights

AWS Cost Explorer analysis indicated a 12% cost reduction owing to optimized resource lifecycle
management and automated de-provisioning of idle instances through template-defined policies.
Additionally, CloudFormation’s version-controlled configuration reduced post-deployment
maintenance effort by approximately 40%.

Overall, the findings confirm that Infrastructure as Code using AWS CloudFormation markedly
improves deployment efficiency, scalability, and security while ensuring cost-effective operations.
The ability to codify infrastructure not only accelerates provisioning but also enforces compliance and
repeatability essential characteristics for secure, scalable, and audit-ready cloud networks.

6. Discussion

The results of this study affirm that Infrastructure as Code (IaC), implemented through AWS
CloudFormation, significantly enhances the efficiency, scalability, and security of cloud network
deployments. The automation of resource provisioning and management not only shortens
deployment cycles but also introduces a paradigm shift in how infrastructure is controlled and
audited. The 65% reduction in deployment time observed highlights the tangible advantage of
declarative automation over manual provisioning, confirming findings from earlier studies (Fowler,
2016; Spinellis et al., 2019) that IaC mitigates configuration drift and operational errors.

One of the most critical insights from the experiment is the improved elasticity and fault tolerance
achieved through CloudFormation’s native integration with Auto Scaling and multi-AZ design
patterns. These configurations allowed near-instantaneous adaptation to workload changes, ensuring
continuous service availability above 99.95%. This reinforces the concept of self-healing infrastructure,
where resources dynamically adjust to maintain stability — a feature impractical in traditional
manually managed systems.

From a security standpoint, embedding encryption standards, IAM role policies, and audit logging
directly within templates led to a 100% compliance rate with CIS AWS Foundation Benchmarks. This
result demonstrates the practical application of security-as-code, aligning with DevSecOps principles
by integrating policy enforcement into the provisioning process itself. The ability to predefine
compliance and governance parameters within CloudFormation templates also simplifies regulatory
auditing, reducing human oversight and administrative workload.

7. Conclusion and Future Work

The study demonstrates that Infrastructure as Code (IaC), implemented through AWS
CloudFormation, offers a powerful, secure, and scalable solution for automating cloud network
deployments. By transforming traditional manual configurations into code-based definitions,
CloudFormation ensures consistency, repeatability, and compliance in infrastructure management.
The research empirically validated the benefits of IaC by comparing CloudFormation-based
automated deployments against manually configured environments, revealing significant
improvements in performance, security, and cost-efficiency.

Quantitative analysis confirmed that automated deployments reduced provisioning time by nearly
65%, while enhancing scalability responsiveness and maintaining 99.95% uptime during peak loads.
The integration of Auto Scaling Groups, Elastic Load Balancers, and multi-AZ designs enabled
dynamic elasticity, ensuring uninterrupted service delivery under varying workloads. Furthermore,
CloudFormation’s stack rollback and change set capabilities provided a robust mechanism for fault
recovery and configuration versioning, effectively reducing operational risks.

From a security perspective, embedding compliance and encryption policies within templates
improved adherence to CIS AWS Foundations Benchmark standards, achieving full compliance
across IAM policies, logging, and encryption. This approach aligns with the emerging DevSecOps
model, wherein security controls are codified and enforced automatically at every stage of the
infrastructure lifecycle. Cost optimization was another notable outcome, as declarative policies
minimized idle resource utilization and reduced post-deployment administrative overhead.

23

Haritha Bhuvaneswari Illa (2023)

However, the research also identified challenges. The steep learning curve associated with

CloudFormation’s syntax and dependency management may limit adoption for small teams.

Additionally, vendor lock-in remains a concern, as CloudFormation templates are AWS-specific and
not directly portable to other cloud platforms.

Future research can extend this study by integrating CloudFormation with Continuous
Integration/Continuous Deployment (CI/CD) pipelines using AWS Code Pipeline or Jenkins to
evaluate end-to-end automation impacts. Another promising direction is to explore multi-cloud IaC

orchestration, combining CloudFormation with Terraform or Pulumi for hybrid deployments.

Incorporating Al-driven optimization techniques could further enhance template generation and cost-
efficiency prediction.

Reference:

1.

10.

11.

12.

13.

Azpilicueta, L., Vargas, C., Lopez-lturri, P., Aguirre, E., Ariznabarreta, A., & Falcone, F. (2016).
Analysis of wireless sensor network performance in urban infrastructure to vehicle scenarios.
2016 USNC-URSI Radio Science Meeting, 43—44. https://doi.org/10.1109/usnc-ursi.2016.7588503
Campbell, B. (2020). The Definitive Guide to AWS Infrastructure Automation.
https://doi.org/10.1007/978-1-4842-5398-4

Chinamanagonda, S. (2019). Automating infrastructure with infrastructure as code (IAC).
International ~ Journal — of Science and Research (IJSR), 8(11), 2037-2045.
https://doi.org/10.21275/sr24829170834

Dugas, A., Poulin, F., & Legrand, F. (2020). Automated deployment of CBC/Radio-Canada’s
media-over-IP data center. SMPTE 2020 Annual Technical Conference and Exhibition, 1-14.
https://doi.org/10.5594/m001918

Mujkanovic, N., Sivalingam, K., & Lazzaro, A. (2020). Optimising Al training deployments
using graph compilers and containers. 2020 IEEE High Performance Extreme Computing
Conference (HPEC), 1-8. https://doi.org/10.1109/hpec43674.2020.9286153

Mulpuri, G. (2021). Infrastructure as code (IAC): Best practices of implementing IAC,
especially in automating infrastructure provisioning and management using Terraform.
International ~ Journal — of Science and Research (IJSR), 10(3), 1971-1975.
https://doi.org/10.21275/sr24402110036

Nashiruddin, M. I, & Nugraha, M. A. (2021). Long range wide area network deployment for
smart metering infrastructure in urban area: Case study of bandung city. 2021 4th International
Conference on Information and Communications Technology (ICOIACT), 221-226.
https://doi.org/10.1109/icoiact53268.2021.9563916

Nyamweno, S., Morin, P., Buchmann, C., Dugas, A., & Poulin, F. (2022). Infrastructure as
code at CBC/Radio-Canada’s media-over-IP data center. SMPTE Motion Imaging Journal,
131(5), 30-37. https://doi.org/10.5594/jmi.2022.3167779

Paladi, N., & Gehrmann, C. (2017). TRUSDN: Bootstrapping Trust in Cloud Network
Infrastructure. Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, 104-124. https://doi.org/10.1007/978-3-319-59608-2_6

Rong, C. Geng, J., Hacker, T.], Bryhni, H, & Jaatun, M. G. (2021). OpenlaC: Open
Infrastructure as Code - the Network Is My Computer. https://doi.org/10.21203/rs.3.rs-1055507/v1
Rong, C., Geng, J.,, Hacker, T.], Bryhni, H.,, & Jaatun, M. G. (2022). OpenlaC: Open
infrastructure as code - the network is my computer. Journal of Cloud Computing, 11(1).
https://doi.org/10.1186/s13677-022-00285-7

Smit, M. (2019). Code convention adherence in Research Data Infrastructure Software: An
exploratory study. 2019 IEEE International Conference on Big Data (Big Data), 4691-4700.
https://doi.org/10.1109/bigdata47090.2019.9006130

Stabile, T. A., Serlenga, V., Satriano, C., Romanelli, M., Gueguen, E., Gallipoli, M. R., Ripepi,
E., Saurel,]J.-M., Panebianco, S., Bellanova, J., & Priolo, E. (2020). The Insieme Seismic
Network: A research infrastructure for studying induced seismicity in the high agri valley

24

14.

15.

16.

17.

Haritha Bhuvaneswari Illa (2023)

(Southern Italy). Earth System Science Data, 12(1), 519-538. https://doi.org/10.5194/essd-12-519-
2020

Thiesse, F., Floerkemeier, C., Harrison, M., Michahelles, F., & Roduner, C. (2009). Technology,
standards, and real-world deployments of the EPC Network. IEEE Internet Computing, 13(2),
36—43. https://doi.org/10.1109/mic.2009.46

Thoelen, K., Joosen, W., & Hughes, D. (2015). Putting sense inside sensor systems: A
coordinated approach to messaging. 2015 IEEE 14th International Symposium on Network
Computing and Applications, 22-26. https://doi.org/10.1109/nca.2015.20

Venzke, M., Kong, P., & Turau, V. (2006). A generic Java interface for vertical integration of
wireless sensor networks. 2006 International Workshop on Intelligent Solutions in Embedded
Systems, 1-12. https://doi.org/10.1109/wises.2006.329128

Wolter, R. (2012). Motivation: The dawn of the age of network-embedded applications.
Network-Embedded Management and Applications, 3-21. https://doi.org/10.1007/978-1-4419-6769-
51

25

	1.2 Problem Context and Motivation
	 Traditional network deployment methods involv
	 Furthermore, ensuring security compliance in
	 This research is motivated by the need to emp
	1.3 Significance of Infrastructure as Code (IaC)
	 Infrastructure as Code extends the principles
	1.4 Research Problem and Objectives
	 Despite widespread recognition of IaC’s poten
	3.Methodology
	 This study adopts an experimental design to e
	3.1. Infrastructure Setup:
	3.2. Security Configuration:
	3.3. Scalability Testing:
	3.4. Evaluation Metrics:
	3.5. Data Collection and Analysis:

	4. Implementation and Case Study
	5. Results
	5.1 Deployment Efficiency
	5.2 Scalability and Elasticity
	5.3 Fault Tolerance and Recovery
	5.4 Security and Compliance Validation
	5.5 Cost and Operational Insights

	6. Discussion
	7. Conclusion and Future Work

