

Vol. Iss. Year South Asian J. Eng. Technol , 158-165| 158

Full Length Article

PROVIDING SECURITY AGAINST IP CROWDSOURCED SPOOFING ATTACKS ON

CLOUD USING TOPOGUARD ALGORITHM

M.KEERTHIVASAN[1],R.KISHORE[2],M.MALATHI[3],G.MONICA[4],V.SENTHILKUMAR[5],K.KUMARESAN[6], K.DINESHKUMAR[7]

a Department of Computer Science and Engineering, K.S.R College of Engineering, Coimbatore- 641020, Tamilnadu, India
a Department of Computer Science and Engineering, K.S.R College of Engineering, Coimbatore- 641020, Tamilnadu, India

*Corresponding Author

DOI:

1 Introduction

ABSTRACT: In this paper, we discussed the brief overview of SDN security survey, we

specifically investigate the potential lt heats of man-in-the-middle attacks on the Open Flow

control channel, we also describe a feasible attack model in the open flow channel, and then we

implement attack demonstrations to show the severe consequences of such attacks. Additionally,

we propose a lightweight countermeasure using Bloom filters. We implement a prototype for this

method to monitor stealthy packet modifications. The successful attacks can effectively poison the

Virtual Machine information, a fundamental building block for core SDN components and

topology-aware SDN applications. With the poisoned network visibility, the upper-layer Open

Flow controller services/apps may be totally misled, leading to serious hijacking, denial of service

or man-in-the-middle attacks. The result of our evaluation shows that our Bloom filter monitoring

system is efficient and consumes few resources.

Keywords: IP SPOOFING (Man-In-The-Middle) attacks, IOT (Internet of Things), SDN

(Software Defined Networks), Secure computing networks.

Programming characterized organizing (SDN), which brings

numerous new highlights, for example, arrange programmability,

incorporated control, and so on., enables owners to naturally deal

with the whole system in a flexible and dynamic manner. With

these advantages, many trust that the eventual fate of the IoT will

be founded on SDN. In this manner, several works [2] and [3] are

proposed for the future Io T .As both SDN switches and secure

hubs are relatively powerful hubs in a regular IOT sending, they

are usually consolidated together, which is an ideal method to

integrate the usefulness of SDN. Despite the fact that sending

IOT– Secure systems utilizing SDN seems promising, security

issues are unavoidable here. As secure hubs and SDNswitches are

generally consolidated together, vulnerabilities in secure nodes

might be utilized by assailants to bargain the SDNswitches they

control. In this way, it is important to have security mechanisms

to additionally screen and improve the security of the SDN

foundation in IoT– Secure situations.

 In SDN, the controller controls every one of the

switches through "Open Flow" channels. Directions, and

solicitations from the controller ,as well as status and insights

from the switches, are transmitted through the OpenFlow

channels. Accordingly, the security and unwavering quality of

Open Flow channels among the controller and switches are

basic for appropriate SDN operation,configuration, and the

board. On the off chance that an aggressor were to intercept or

potentially adjust the messages on these channels, the person

could send counterfeit messages to the switches and the

controllers, propelling a wide assortment of assaults, for

example, denial of administration or man-in-the-center (IP

Spoofing) assaults. Open Flow channels, once blocked, may

bring disastrous circumstances to both the system suppliers

and their customers.

As a rule, we can't just depend on figure systems. There ought
to be other can gather customers ‘sensitive data (e.g., sensor
information delineating a client's day by day conduct) by

directing the changes to send duplicates of packets containing
such data to the aggressor. In this way, sensitive client data
will be uncovered to aggressors. With network framework
under such a danger, SDN has more security worries than a
customary system. Taking another example, the assailant can

send counterfeit bundles, in the interest of the switches, to the
controller, harming the controller's global view of the system
topology. With the mistaken topology, the controller may
misconfigure other respectful switches, which may cause the

system network blackouts. The results a terrible client
experience and considerable income lost. With such potential
dangers still practical, SDNs will never completely replace
traditional systems. Despite the fact that it offers numerous
new attractive features, without taking care of these issues, all

the flexibility is good for nothing. Along these lines, work
ought to be done to shield the Open Flow channels from
interception. One may use figure systems to encode the
channel after validation. In any case, confirmation and

encryption alone can't ensure the wellbeing of the Open Flow
channels.TLS, for instance, is a standout amongst the most

mainstream cryptographic protocols.

Keerthivasan et. al.,/2019

 South Asian J. Eng. Technol , 2019, 157-164| 159

2 OVERVIEW OF SDN SECURITY

 There are clear security advantages to be gained from

the SDN architecture. For example, information generated
from traffic analysis or anomaly-detection in the network can

be regularly transferred to the central controller. The central
controller can take advantage of the complete network view

supported by SDN to analyze and correlate this feedback from

the network. Based on this, new security policies to prevent an
attack can be propagated across the network. It is expected

that the increased performance and programmability of SDN

along with the network view can speed up the control and

containment of network security threats.

On the down-side, the SDN platform can bring with

it a host of additional security challenges. These include an

increased potential for Denial-of-Service (DOS) attacks due to

the centralized controller and flow-table limitation in network

devices, the issue of trust between network elements due to

the open programmability of the network, and the lack of best

practices specific to SDN functions and components. For

example, how to secure the communication channel between

the network element and the controller when operated in the

same trust domain, across multiple domains, or when the

controller component is deployed in the cloud?

In the past few years, a number of industry working

groups have been launched to discuss the security challenges and

solutions. Meanwhile, researchers have presented solutions to

some SDN security challenges. These range from controller

replication schemes through policy conflict resolution to

authentication mechanisms. However, when the extent of the

issues is compared to the degree of attention placed on them, it is

clear that without a significant increase in focus on security, it is

possible that SDN will not succeed beyond the private data center

or single organization deployments seen today. The main

objective of this paper is to survey the literature related to

security in SDN to provide a comprehensive reference of the

attacks to which a software-defined network is vulnerable, the

means by which network security can be enhanced using SDN

and the research and industry approaches to security issues in

SDN. The paper is structured as follows: Section II provides a

context to the work by introducing the characteristics of SDN. In

Section recent SDN and Open Flow security analyses are

presented followed by a categorization of the potential attacks to

which the architecture is vulnerable. Research work presenting

solutions to these attack types is then presented in Section IV.

The arrows in Fig. 1 indicate the attack categories for which

solutions have been proposed and, by extension, those areas

which have not yet received research attention. In Section V, the

alternative view of SDN security is introduced with a survey of

the research work dealing with security enhancements based on

the SDN architecture. In Section VI, the two perspectives on

SDN security are compared with improved functionality, open

challenges, and recommended best practices identified. Section

VII highlights open standards and open source industry group

work on SDN security. Future research directions are identified in

Section VIII. The paper is concluded in Section IX. For clarity,

an overview of the Security Survey structure is presented in Fig.

1.

.

Fig 1: overview of SDN Security

 Fig 2: Attacking model

Keerthivasan et. al.,/2019

 South Asian J. Eng. Technol , 2019, 157-164| 160

Fig 3: Traffic redirection attack.

Time Source

Desti

natio

n

Proto

col Info

1.001096
000 10.0.0.1

10.0.0.
4 ICMP

Echo (ping)
requestid=0x08fc,

 seq=2/512

1.0011210

00 10.0.0.3
10.0.0.
3 ICMP

Echo (ping)
request id=0x08fc,

 seq=2/512

1.001447
000 10.0.0.3

10.0.0.
1 ICMP

Echo (ping) reply
id=0x08fc,

 seq=2/512

1.001457
000 10.0.0.4

10.0.0.
1 ICMP

Echo (ping) reply
id=0x08fc,

 seq=2/512

Fig4:Redirection attack. Packet capture result of h1 ping

h4.

3. ATTACK DEMONSTRATION

Here, we present three assault exhibitions. In the principal, the

aggressor diverts streams in the information plane. The second

epitomizes how the assailant can gather data from the

information plane. The last, indicates how the assailant can

harm the controller's perspective on the system. We portray

just three assault situations out of numerous situations. The

total range of conceivable assaults is right now obscure.

A. Condition Set-Up

We use Floodlight, an open source SDN controller, as

ourSDN controller, and use Mininet to reproduce a system in

our examinations. The controller and switches convey through

Open Flow v1.3. To disentangle our demos, we accept that the

assailant, the controller, and the Mininet VM are situated on a

similar nearby system. This supposition does not influence the

consequence of our demos in light of the fact that the assailant

can generally block OpenFlow channels with parodying

procedures, for example, ARP mocking. This is conceivable

as long as the aggressor exists in the way between the switch

and the controller. Since Mininet is running on a virtual

machine, every single mimicked switch share a similar IP

address and remotely interface with the controller. Our assault

contents assault just the Minine tvirtual machine, catching

every single reproduced switch. Our configuration does not

influence the last consequence of the demos because the

procedure to assault the switch's interface is indistinguishable

to assaulting the Mininet virtual machine. Our assault contents

are written in Python v2.7 utilizing the well known scapy

library, which is helpful for creating, sending, and sniffing

bundles. We utilize this library to fabricate counterfeit Open

Flow directions for the switches. In our demos, we use ARP

parodying systems to block the Open Flow channel.

B. Traffic Flow Modification

The most direct assault is to stealthily modify the unfortunate

casualty switch's sending table. In our examination, the aggressor

obstructs a specific host's traffic stream and diverts the stream to

another host. Fig. 2 demonstrates the possibility of this assault.

The assailant embeds two Open Flow bundles, which contain

stream table adjustment directions, into the Open Flow channel.

The first Open Flow bundle educates the change s1 to adjust the

goal IP and MAC address of any parcels initially bound for host

h4. The new IP address and MAC address are that of host h3. The

second Open Flow bundle directions the change to alter the

source IP address of any parcels starting from h3, to the IP

address of h4. Thus, if h1 attempts to speak with h4, it will really

be diverted to h3, leaving h1 unconscious that it is speaking with

an alternate host. To test the assault, we let h1 ping h4 and catch

the bundles transmitted utilizing Wireshark. Fig. 3 demonstrates

the bundle catch results (from every one of the interfaces in s1).

In the figure, the principal passage demonstrates that s1 gets the

ICMP bundle from h1 (10.0.0.1) with the goal h4 (10.0.0.4). In

the wake of being prepared by the switch, the bundle's goal IP

address has been changed to h3's (10.0.0.3) (the second passage).

In spite of the fact that not appeared in Fig. 3, from the answer of

h3 (the third passage), the MAC address of the bundle is likewise

changed. Going through s1 once more, the source IP address is

changed back to the IP address of h4 (the fourth passage). These

diverted ways can't be gathered by h1. On the off chance that h1

is a Web camera that attempts to speak with a cloud server h4

however out of the blue speaks with a pernicious machine h3, all

delicate data from h1 will be presented to the assailant.

C. Information Collection

Keerthivasan et. al.,/2019

 South Asian J. Eng. Technol , 2019, 157-164| 161

The aggressor may likewise stealthily gather data by changing the

switch sending table. Fig. 4 outlines the essential thought of a

data accumulation assault. The aggressor first fashions an Open

Flow parcel, which contains stream table alteration directions,

and sends it to the injured individual switch. The assailant teaches

the change to send a duplicate of every bundle focusing on h4 to

the "controller," which is really the aggressor. When the

unfortunate casualty switch refreshes its sending table, the

assailant will get every one of the parcels initially bound for h4.

We let h1 ping h4 and again catch all parcels from every one of

the interfaces of s1 utilizing Wireshark. Fig. 5 demonstrates the

catch result. In this exhibit, we let the assailant essentially sends

back the ping parcel only to test. Fig. 6 demonstrates the

consummation purpose of h1's ping bundles. We can see that the

host gets two copy answers, one from h4 and the other from the

assailant. Comparable as the past exhibition, delicate data will be

spilled to the aggressor, however both the customer and the

server won't know about the busybody.

D. Topology Poisoning Attack

In SDNs, the controller learns the worldwide topology
through LLDP bundles. Assume the controller directions
change s to yield a LLDP parcel through port eth1. Another

switch s' gets this parcel on port eth2. Switch s'

Fig: 5 Information collection attack.

Time Source
Destinatio

n Protocol Length Info

19.27024500
0 10.0.0.1 10.0.0.4 OF 1.3 206

Of_packet_i
n

19.27461700
0 10.0.0.1 10.0.0.4 OF 1.3 204

Of_packet_o
ut

20.27188000
0 10.0.0.1 10.0.0.4 OF 1.3 206

Of_packet_i
n

20.27775100
0 10.0.0.1 10.0.0.4 OF 1.3 204

Of_packet_o
ut

Fig: 6 Information collection attack. Packet capture of h1

ping h4

Incorporates both this bundle and the port eth2 number in a

packet in message and sends it to the controller. From this
message, the controller realizes that port eth1 in s interfaces
with port eth2 in s'. On the off chance that the aggressor alters
the LLDP bundles, the controller will have an off base
perspective on the worldwide topology. Fig. 7 demonstrates

the fundamental thought of this assault. The assailant
stealthily alters both the yield port and the max_lenfield in the
packet_out message. The max _lenfield shows the most
extreme number of bytes the change can send to the controller.

On the off chance that this field is set to 0, and the yield port
is set to the controller, s1 basically disregards this message.
Along these lines, s2 gets no opportunity to get the LLDP
parcel, let alone forward the bundle back to the controller. In
the event that the aggressor does likewise to s2, the controller

will reason that these two switches are not associated. Fig. 8
demonstrates the topology produced by the controller amid the
assault. Fig. 8 demonstrates the DPID of each switch. The
DPID of s1 is "00:00:00:00:00:00:00:01" while the DPID of

s2 is "00:00:00:00:00:00:00:02." The third switch, which isn't
appeared in Fig. 7, isn't associated with this assault. In all
actuality, s1 and s2 are associated. Nonetheless, the controller
is tricked into imagining that they are most certainly not. On

the off chance that there is a bundle investigation center box
along the s1– s2 interface, the assailant can utilize this

technique to go around review.

Fig: 7 Information collection attack: h1 ping h4 in terminal.

Keerthivasan et. al.,/2019

 South Asian J. Eng. Technol , 2019, 157-164| 162

Fig: 9 Topology poisoning attack, Controller view.

4. COUNTERMEASURE

In this segment, a countermeasure and its Open Flow

augmentation to identify IP Spoofing assaults on Open Flow

channel will be proposed. As referenced in the past segment, the

assailant can stealthily adjust bundles in the information plane by

transforming at least one switches' sending table. To identify such

a danger, one clear thought is to give the controller a chance to

inquiry every one of the bundles that the switches sent, and after

that look at them one by one. Be that as it may, this guileless

technique will significantly expand the weight of both the

controller and the system, and furthermore it isn't effective. To

facilitate the weight, we propose a technique to recognize bundle

alterations utilizing a Bloom channel. Sprout channel is a space-

productive information structure, which is utilized for testing the

presence of a component in a set.

We let each switch along one stream privately put parcels of

that stream into a Bloom channel. In the event that they put

similar parcels into the Bloom channel, individually, these

Bloom channels ought to be the equivalent. Hence, the

controller can distinguish any bundle adjustments of this

stream by gathering all these Bloom channels and checking

the distinction between these channels. In the event that there

are any contrasts between these channels, it is certain that the

parcels are altered amid its conveying. Other than every one of

the switches' Bloom channel, we additionally need the

inception bundle sending from the sensor in the event that the

information parcels are changed at the primary switch. We put

a screen procedure in the protected hub. These procedures do

likewise as what the switches do, putting bundles from a

particular stream into Bloom channels and sending Bloom

channels to the controller when asked. The main distinction is

that these screen forms cooperate with another example in the

cloud instead of the controller. At that point the case advances

the Bloom channel to the controller. The reason of utilizing

another occasion is to shroud the cooperation between the

screen procedure and the controller. As secure hubs much of

the time speak with the cloud and these screen possibly

associate with the cloud when asked for, the aggressor

experiences issues finding To apply this thought, we broaden

OpenFlow by including three new message types:

1) BF_INITIAL;
2) BF_SUBMIT; and
3) BF_REPLY. The implications of these messages are
presented later. Figs. 9 and 10 show the convention of
instating and concluding our Bloom channel strategy,
separately. To begin discovery, the controller initially sends
all switches an initialization command (BF_INITIAL), which
contains the accompanying data:

1) the inspected stream f , spoken to by matching fields utilized

in Open Flow; 2) a tag τ , which will be used later;
3) a set S of fields that ought to be discarded when figuring the

hash estimations of parcels (fundamental for embeddings into a

Bloom channel); and 4) the greatest number of bundles embedded

into the channel n. On the off chance that n is set to 0, there is no

restriction for embeddings parcels into the Bloom channel.

Subsequent to accepting BF_INITIAL, each switch introduces

itself as indicated by the parameters and answers with an

affirmation (BF_REPLYwith no substance) to the controller. At

the point when the controller receives answer from each switch, it

triggers the discovery arrange by changing the stream table of the

primary change to tag flowf with τ. When the controller needs to

gather the

Bloom channels from the switches, it initially alters the stream
passage of the labeled stream f in the keep going switch on the
way by including a packet inaction. Along these lines, the
controller can follow the last parcel of the system. From that
point onward, the controller directions the primary change to
quit labeling stream f. At the point when there is no bundle
from the last switch for a specific time, it conveys BF_SUBIP
Spoofingessages to every one of the changes to present their
Bloom channels byBF_REPLY messages. The controller
thinks about every one of the channels to discover whether
there is any distinction among them.If any distinction is
discovered, the controller will caution the manager about the
getting into mischief switches

A. Constraint of the Countermeasure

This methodology works much of the time by and by. In any

case, in some extraordinary cases, for example, all the Open

Flow channels between the controller and switches in a single

stream way has been blocked, our strategy won't work. In

addition, if the assailant adjusts fields that are not in set S, this

paper won't work either
 Single crystal XRD for the grown crystals was
taken using ENRAF NONIUS CAD-4 X-Ray
diffaractometer with Mo Kα (λ=0.7107 Å). The
obtained unit cell parameters are a=3.93 Å, b=24.94
Å c=28.67 Å, From the single crystal XRD it is
concluded that grown crystal belongs to
Orthorhombic system with the noncentro symmetric
space group of Fddd [17].

5. IMPLEMENTATION

Keerthivasan et. al.,/2019

 South Asian J. Eng. Technol , 2019, 157-164| 163

In this area, we will expand on the execution of our Bloom
channel screen framework, which can recognize bundle
alterations in SDNs. In particular; we will show the review of
the framework and portray all segments of the framework.

A. Framework Overview

The screen framework, which we allude to as the "Sprout
channel screen framework," comprises of two sections. One is
executed in Floodlight controller, and the other is actualized in
Open v Switch (OVS). Fig. 11 demonstrates the design of our
framework. The controller side has one module named
"Blossom channel screen," which is in charge of conveying
BF_INITIAL and BF_SUBMIT messages to OVS, gathering
answers from OVS, and looking at the switches' channels.
This module offers two REST APIs for chairmen or different
applications to lead the Bloom channel recognition stage. The
switch parcel comprises of two segments. As a rule, the switch
has two assignments for every bundle: 1) extricate analyzed
fields (or information) and 2) embed separated substance into
the Bloom channel. In OVS, every one of the bundles are
gotten and sent in the data path, a module that is running in
piece space where extraction begins. In any case, any deferral
inside the data path can influence the sending speed. In this
manner, we put the hash capacity and

Bloom channel inclusion code into the client space. Along
these lines, the switch can embed the removed substance
while sending parcels in the data path. The switch likewise
has one part to speak with the controller, getting Open Flow
messages from the controller, setting off the Bloom channel
location stage, and answering with the filled Bloom channel to
the controller.

B. Controller Side Design

1) Bloom Filter Monitor Module: The principle part
of the Bloom channel screen, as we referenced already, is a
module in the Floodlight controller, which is consequently
stacked amid the instatement of Floodlight. The module has
two primary capacities: 1) instating and 2) settling the Bloom
filte screen technique. Both of these capacities can be
summoned from REST APIs. The work process of these two
capacities is equivalent to appeared in Figs. 9 and 10.
2) Open Flow Library: To stretch out Open Flow and
a few execution classes (actualized under various Open Flow
renditions) are embedded into the source code. We
additionally change the serialization and OFT ypeenum to
help the serialization of these messages with the goal that they
can be transmitted through the system.
3) Floodlight Core: To empower Floodlight to deal with
our new messages as simply one more standard Open Flow
message, we change some center codes of Floodlight. Class
OF Switch Hand shake Hand lerise in charge of getting
diverse kinds of messages and dispatching them to various
parts. We embedded code here to give it a chance to dispatch
BF_REPLY messages to a message audience. Along these
lines, the Bloom channel screen can get and parse BF_REPLY
messages from switches through a message audience.

C. Switch Side Design

1) Open Flow Extension: To broaden Open Flow in OVS,

we first embed the head structure of our three new Open Flow

messages, in the Open Flow head documents, into OVS. At that

point, we add new sections in enum OPTRAW and OFTYPE for

our new message type. We likewise execute a message developer

for BF_REPLY and parsers for BF_INITIAL and BF_SUBMIT,

with the goal that the OVS can comprehend these new messages.

At last, we add our new message handlers to the Open Flow

handler in OVS. The handler parses the message with the parser

and proceeds according to the message substance. A few moves

might be made, for example, designing the data path through net

link, adjusting the stream table to label streams, and answering to

the channels produced. With these adjustments, OVS is capable

to communicate with Floodlight, which additionally has the Open

Flow extension.

2) Fields Extraction and Element Insertion: OVS is
mainly divided into two sections: 1) v switched and 2) data
path. V switched runs in the client space and is in charge of
speaking with the controller and dealing with the stream table
alongside some different highlights. Data path keeps running
in portion space and is in charge of sending parcels. As this
part keeps running in piece space, the parcels can be
immediately sent. Every one of the parcels gotten by OVS
previously go to the data path component where highlight
extraction is actualized. Once the switch gets one labeled
parcel, it removes fields according to the setup from switched.
After extraction, it sends the outcome to v switched utilizing
up call, which is an instrument utilized for data path to send
messages to v switched. In ourimplementation, we influence
this to send the separated header fields to user space. When
client space gets the separated field data, it figures the hashes
and embeds them into the Bloom channel.
3) Filter Placement and Initialization: It is nontrivial to

decide where to put the Bloom channel. For the most part, there

are a few scaffolds inside one OVS element. Each extension

might be associated with a few diverse VMs. On the off chance

that we put the channel in the worldwide area, (i.e., all scaffolds

share one channel), at that point the traffic streaming between

VMs won't be secured. In this manner, each scaffold ought to be

treated as a switch element and given their own Bloom channel.

In our usage, we put the Bloom channel inside the structure

ofproto, which is for Open Flow convention in OVS, since each

extension has just a single such information structure, and this

structure can be gotten to amid the handling of the up call, where

messages of removed substance are gotten. At the point when a

scaffold associates with the controller, it will introduce its own

ofproto structure. The channel spaces are distributed at the same

time. When the channel has been submitted to the controller, the

bridge will reset the channel for the following accumulation.

4) Hash Function: The hash calculation is executed

withMurmur3 32-bit [12]. It is autonomous and consistently
distributed, which is able for use in a Bloom channel. Further
more ,it is basic and productive. For every parcel, we register
the Murmur3 hashes with various seeds (to produce the k vital

hashes utilized in the Bloom channel) and the hash yield is
truncated by the channel estimate. The choice of k will be
talked about in the following area.

Keerthivasan et. al.,/2019

 South Asian J. Eng. Technol , 2019, 157-164| 164

6. CONCLUSION

In this review, the proof for the opposite sides of the SDN
security coin has been exhibited; that it is conceivable to
enhance arrange security utilizing the qualities of the SDN
architecture, and that the SDN engineering presents security
issues. The end is that the work on upgrades to organize
security through SDN is progressively develop. This is
confirm by the industrially accessible applications. Be that as
it may, inquire about arrangements have been displayed to
address a portion of the security issues presented by SDN e.g.,
how to constrain the potential harm from a malignant/traded
off application. Work on these issues is creating empowered
by the expanding security focal point of industry-supported
institutionalization and research gatherings. We center around
the potential risk of IP Spoofing assaults focusing on Open
Flow diverts in IoT– Secure situation. We acquaint an assault
demonstrate with tell the best way to perform such assault on
our proposed SDN design. We likewise actualize three assault
demos to uncover how the assault functions in detail. To
identify such assaults, we additionally propose a
countermeasure utilizing Bloom channel to distinguish IP
Spoofing assault. A model of this Bloom channel screen is
actualized by expanding the Open Flow protocol. The
assessment result demonstrates that the Bloom channel
strategy is both lightweight and effective.

REFERENCES

[1] 11th Annual Visual Networking Index: Global IP Traffic
Forecast Update, Cisco, San Jose, CA, USA, 2015.

[2] A. Wang, Y. Guo, F. Hao, T. V. Lakshman, and S.

Chen, “Scotch: Elastically scaling up SDN control-plane
using vSwitch based overlay,”in Proc. 10th ACM Int.
Conf. Emerg. Netw. Exp. Technol., Sydney, NSW,
Australia, 2014, pp.403–414.

[3] D. Wu, D. I. Arkhipov, E. Asmare, Z. Qin, and J. A.

McCann, “Ubiflow: Mobility management in urban-
scale software defined IoT,” in Proc.IEEE INFOCOM,
Hong Kong, 2015, pp. 208–216.

[4] Y. Sheffer, R. Holz, and P. Saint-Andre,

“Summarizing known attacks on transport layer
security (TLS) and datagram TLS (DTLS),” IETF,
Fremont, CA, USA, RFC 7457, 2015.C. Hlauschek,
M. Gruber, F. Fankhauser, and C.Schanes,
“Prying open Pandora’s box: KCI attacks against
TLS,” in Proc. 9th USENIX WOOT, Washington,
DC, USA, 2015, p. 2.

[5] SSL Labs. Survey of the SSL Implementation of the Most
Popular Web Sites.Accessed on Apr.

2016.[Online]. Available:
https://www.trustworthyinternet.org/ssl-pulse/

[6] A. Cui, M. Costello, and S. J. Stolfo, “When firmware
modifications attack: A case study of embedded
exploitation,” in

Proc. NDSS, San Diego, CA, USA, 2013.

[7] K. Chen, “Reversing and exploiting an apple firmware
update,” in Proc. Black Hat, Las Vegas, NV, USA, 2009.

[8] S. Hanna et al., “Take two software updates and

see me in the morning: The case for software security

evaluations of medical devices,” in Proc. HealthSec,

San Francisco, CA, USA, 2011,

p. 6.

[10] C. Miller, “Battery firmware hacking,” in Proc. Black
Hat USA, Las Vegas, NV, USA, 2011, pp. 3–4.

[11] B. Jack, “Jackpotting automated teller machines redux,”
in Proc. Black Hat USA, Las Vegas, NV, USA, 2010.

[12] Austin Appleby. Accessed on Apr. 2016.[Online].
Available: https://sites.google.com/site/murmurhash/

[13] S. Scott-Hayward, S. Natarajan, and S. Sezzer, “A

survey of security in software defined networks,”
IEEE Commun.Surveys Tuts., vol. 18, no. 1, pp. 623–
654, 1st Quart., 2016.

[14] S. Shin et al., “Fresco: Modular composable

security services for software-defined networks,”
in Proc. NDSS, San Diego, CA, USA, 2013.

[15] P. Porras, S. Cheung, M. Fong, K. Skinner, and V.

Yegneswaran, “Securing the software-defined network
control layer,” in Proc. NDSS, San Diego, CA, USA,
2015.

[16] S. Matsumoto, S. Hitz, and A. Perrig, “Fleet: Defending
SDNs from malicious administrators,” in

Proc. ACM WorkshopHot Topics Softw. Defined Netw.,
Chicago, IL, USA, 2014, pp. 103–108.

Keerthivasan et. al.,/2019

 South Asian J. Eng. Technol , 2019, 157-164| 165

[17] S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu,
“Model checking invariant security properties in

OpenFlow,” in

Proc. IEEE ICC, Budapest, Hungary, 2013, pp. 1974–
1979.

[18] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning

network visibility in software-defined networks: New
attacks and countermeasures,” in Proc.NDSS,
San Diego, CA, USA, 2015.

[19] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann,
“SPHINX: Detecting security attacks in software-
defined networks,” in Proc. NDSS, San Diego, CA, USA,
2015.

[20] S. Yi, C. Li, and Q. Li, “A survey of secure
computing: Concepts, applications and issues,” in
Proc. ACM WorkshopMobile Big Data,
Hangzhou, China, 2015, pp. 37–42.

[21] S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of
secure computing: A survey,” in Proc. WASA, Qufu,
China, 2015, pp. 685–695.

[22] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Secure computing:
Platform and applications,” in Proc. IEEE HotWeb,
Washington, DC, USA, 2015, pp. 73–78.

[23] Z. Hao and Q. Li, “EdgeStore: Integrating edge
computing into cloudbased storage systems,” in Proc.
IEEE/ACM Symp.Edge Comput., Washington, DC, USA,
2016, pp. 115–116.

[24] Z. Hao, E. Novak, S. Yi, and Q. Li, “Challenges and
software architecture for secure computing,” IEEE
Internet Comput., vol. 21, no. 2, pp. 44–53, Mar./Apr.
2017.

